
Mathematics of the USSR-Izvestiya

MONOTONE EQUIVALENCE IN ERGODIC
THEORY
To cite this article: A B Katok 1977 Math. USSR Izv. 11 99

 

View the article online for updates and enhancements.

Related content
SPECTRAL PROPERTIES OF GENERIC
DYNAMICAL SYSTEMS
Anatolii M Stepin

-

PARTIALLY HYPERBOLIC DYNAMICAL
SYSTEMS
M I Brin and Ja B Pesin

-

ON A CLASS OF SPECIAL FLOWS
L A Bunimovi

-

Recent citations
  ,
Anatolii Moiseevich Vershik et al

-

The theory of filtrations of subalgebras,
standardness, and independence
A. M. Vershik

-

Anatole Katok and Jean-Paul Thouvenot-

This content was downloaded from IP address 132.174.254.159 on 13/04/2019 at 02:36

https://doi.org/10.1070/IM1977v011n01ABEH001696
http://iopscience.iop.org/article/10.1070/IM1987v029n01ABEH000965
http://iopscience.iop.org/article/10.1070/IM1987v029n01ABEH000965
http://iopscience.iop.org/article/10.1070/IM1974v008n01ABEH002101
http://iopscience.iop.org/article/10.1070/IM1974v008n01ABEH002101
http://iopscience.iop.org/article/10.1070/IM1974v008n01ABEH002102
http://dx.doi.org/10.4213/rm9763
http://iopscience.iop.org/0036-0279/72/2/257
http://iopscience.iop.org/0036-0279/72/2/257
http://dx.doi.org/10.1016/S1874-575X(06)80036-6


Izv. Akad. Nauk SSSR Math. USSR Izvestija
Ser. Mat. Tom 41 (1977), No. 1 Vol. 11 (1977), No. 1

MONOTONE EQUIVALENCE IN ERGODIC THEORY

UDC 517.9 + 513.88

Α. Β. ΚΑΤΟΚ

Abstract. A class of monotonely equivalent automorphisms (standard automorphisms),

which includes all ergodic automorphisms with discrete spectrum and most of the well-known

examples of automorphisms with zero entropy, is studied. The basic results are two necessary

and sufficient conditions for standardness: the first in terms of periodic approximation and

the second in terms of the asymptotic properties of "words" arising from a coding of most

trajectories by a finite partition. Also certain monotone invariants are defined and their prop-

erties discussed.

Bibliography: 39 titles.

Introduction

1. Abstract ergodic theory studies the action of groups of automorphisms of measure

spaces or, as is sometimes said, groups of measure-preserving transformations. For such ac-

tions there is a natural, from the intrinsic viewpoint, notion of isomorphism called metric

isomorphism. Namely, actions {Tg} and {S },gG G, of a group G on measure spaces

(Χ, μ) and (Y, v) are called metrically isomorphic if there is an isomorphism R:(X, μ) —•

(Υ, ν) such that RT = SJi., g S G. In other words, we can say that under a metric isomor-

phism the invariant measure of the action {T } is transformed into the invariant measure of

{S }, and each (more precisely, almost each) trajectory of { Τ Λ is mapped onto a trajectory

of {Sg} with preservation of the group structure on the trajectory.

It turns out that the complete classification up to metric isomorphism of the actions

of groups, excluding the trivial case of compact groups, is a hopeless problem. In attempting

such classification two kinds of difficulty arise: the invariants turn out to be too many, and

many invariants are difficult or impossible to calculate. A typical case is the group Z; that

is, the group consisting of the powers of a single automorphism (in this case one usually talks

simply of automorphisms), which has been studied most intensively. Here there are remark-

able partial results—the classification of automorphisms with discrete spectrum (von Neu-

mann; see [1]) and Bernoulli shifts (Ornstein [2]). However, even on passing to broader

special classes, for example to automorphisms with simple spectrum, or to AT-automorphisms,

the problem of metric classification becomes immense.

2. Entirely in the spirit of modern mathematics one tries to replace metric isomor-

phism by some weaker equivalence relation in the hope that the new classification problem

AMS (MOS) subject classification (1970). Primary 28A65.
Copyright © 1978, American Mathematical Society
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will prove to be interesting and at the same time solvable completely or in important parts.

One of these equivalence relations, which is prompted by the definition of metric isomor-

phism, is that of trajectory isomorphism, for which it is required that there exist a mapping

R, transforming the measure μ to ν and the trajectories of {Γ } to the trajectories of {Sg},

but without preserving the group structure on the trajectories. However, this equivalence

relation, at least for sufficiently simple groups G, turns out to be almost vacuous: it pre-

serves only the partition into ergodic components of the action (see [3] and [4]). There-

fore we must look for an equivalence relation weaker than metric isomorphism but stronger

than trajectory isomorphism.

There are some "exotic" groups for which such equivalence relations arise in an ob-

vious way. There is the question of quasi-cyclic groups of the form G = U ^ = i %qn, where

Zql

c-t Z(?2

c-> . . . is an increasing sequence of cyclic groups. The subgroups ZQn form a

filtration in G, and it is natural to consider, for actions of G, trajectory isomorphism which

preserves not only the trajectory partition of G but also the decreasing sequence of parti-

tions {ifn } into the trajectories of the actions of Zq . The problem of classification of such

sequences was first taken up by Versik [5]. In a subsequent paper [6], the class of standard

sequences was selected and necessary and sufficient conditions for standardness were formu-

lated in terms of the so-called universal projection operator. In the same place there are

some results on the connection between metric properties of the action of quasi-cyclic

groups and the properties of the decreasing sequence of partitions generated by these actions;

in particular, the nonstandardness of the sequence generated by a Bernoulli action and the

standardness of the sequence generated by an ergodic action with discrete spectrum (cf.

with our Corollary 8.2). We note further the work of Stepin [7], in which it is proved that

for sequences qn bounded in growth, the entropy of the action of quasi-cyclic groups is the

same for two actions generating isomorphic sequences of partitions, and consequently, is an

invariant for trajectory isomorphism with preservation of filtration.

3. The general idea, which is prompted by the case of quasi-cyclic groups, consists of

the following. Let the group G have some structure (a filtration, a partial order, a topology,

smoothness, etc.). We will regard the actions {T' } and {Sg} of G on measure spaces (Χ, μ)

and (Y, v) as equivalent if there exists an isomorphic mapping R: X —> Y, transforming the

trajectories of {7' } onto the trajectories of {Sg} and preserving the induced structure on

almost each trajectory. It should be noted, in contrast to the case of quasi-cyclic groups,

that in many cases it is not necessary to require that R should be an isomorphism of mea-

sure spaces. Thus in the case of the group Ζ the natural structure is the order relation, and

if in the above scheme we require that R be one-to-one and transform μ to v, then the en-

suing equivalence relation will coincide with metric isomorphism. But if we limit the re-

quirement so that R transforms μ to a measure absolutely continuous relative to v, then

there arises an interesting equivalence relation which we call monotone equivalence (see

Definition 2.2). This equivalence relation was first introduced more than thirty years ago

by Kakutani [9], in connection with describing the different special representations of a

flow (see Proposition 2.4). The study of ergodic automorphisms from the viewpoint of

monotone equivalence is the main topic of this article. In at least two respects monotone

equivalence turns out to be a more visible equivalence relation than metric isomorphism.
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First, there is a class of monotonely equivalent automorphisms which includes the majority

of the natural examples of automorphisms with zero entropy. Taking account of the anal-

ogy with the case of quasi-cyclic groups, we call the automorphisms of this class standard

(see Definition 2.5). Second, between the classes of monotonely equivalent automorphisms

we can define a transitive binary relation of majorization (see Definition 2.4); moreover,

the class of standard automorphisms turns out to be the unique one which is majorized by

all the classes (Theorem 1).

We note that the analogous definition of monotone equivalence in the case of flows

(actions of R; see Definition 2.1) appears more natural, since in that case we may take R

to be one-to-one and transforming μ to a measure equivalent to v.{1) However, the construc-

tion of a special representation for flows allows us to essentially reduce this case to the case

of automorphisms (see Proposition 2.4). Technically, even, the case of automorphisms is

much simpler, since in this case many difficulties, connected with the necessity to consider

sets of measure zero, are absent.

4. We will systematically use the fact that monotone equivalence for ergodic auto-

morphisms is precisely the strongest equivalence relation which allows metric isomorphism

and also the passage to any derived and special automorphism (Proposition 2.4). This idea,

due to Kakutani [9], has for a long time not been seriously developed. It is true that from

time to time there have appeared papers in which these and other metric invariants of the

passage to derived and special automorphisms have been studied. The most important re-

sult of this kind is the formula of Abramov [10] for the entropy of a derived automorphism,

from which it follows that the property of the entropy of an automorphism being zero, a

positive number or infinity is an invariant of monotone equivalence. Other results are of a

negative character; they show that automorphisms with various metric properties may belong

to any monotone equivalence class. For the property of weak mixing this was proved by

Chacon [11], for mixing by Ornstein and Friedman [12], for the property of having a

proper function with a given proper value λ € S1 by Hansel [13]. There is a more detailed

survey of similar results in [8], Chapter 6. These results show that the traditional metric

invariants (except entropy) bear no relation to the study of monotone equivalence.

5. In this paper we start a systematic study of monotone equivalence. We introduce

a series of new ideas, the basic one of which is the metric pM (see (4.2) and (4.3)) in the

space of finite words of elements of a finite alphabet. With the help of this metric are de-

fined the notions of M-triviality (Definitions 9.2 and 9.3) and invariants of entropy type,

and also the c?M-metric for random processes, which has been introduced independently by

Sataev [14| and Feldman [37]. The ideas mentioned form the basis for the creation of a

new technique of working with automorphisms, adapted for the study of monotone equi-

valence. In this paper we are engaged in the study of standard automorphisms. As ex-

plained in subsection 3, this class has great significance, and any detailed investigation of

monotone equivalence must include an analysis of the notion of standardness.

6. The paper consists of 11 sections. The first 4 are of an introductory nature. In

§2 we give the basic definitions and establish the equivalence of various forms of these

( ')In addition, in the case of flows there is a natural (and fruitful) analogue of monotone equiva-
lence in the theory of continuous and smooth dynamical systems. This question is discussed in more
detail in Chapter 6 of the survey (8) .
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definitions. In §4 we give the definitions of the metrics pH and pM (pH is the well-known

Hamming metric) and list the properties of these metrics which are used later. In §§5—7

the first—approximation—criterion for standardness is proved. In §§8-10 we prove the most

important criterion for standardness (Theorem 4), which is that sufficiently long segments

of the trajectories of most points must, under coding, transform to words which are close

in the metric pM (the property of M-triviality; see Definitions 9.2 and 9.3). If we consider

monotone equivalence as the analogue, for actions of Z, of trajectory isomorphism with

preservation of filtration for actions of quasi-cyclic groups, then this criterion can be inter-

preted as the analogue of Versik's criterion mentioned in subsection 2. In §10 we also give

some immediate corollaries of Theorem 4. Finally, § 11 is of the nature of a survey. In it

we list some less immediate corollaries of the standardness criteria and also mention recent

works of other authors and unsolved problems.

The results of this paper were announced in [16] and [17].

The author discussed many questions relating to this work with A. V. Kocergin and

E. A. Sataev. These discussions assisted in the simplification of a number of proofs. A

summary of lectures given by the author in a seminar at the V. A. Steklov Institute of

Mathematics in the Academy of Sciences of the USSR, made by M. I. Brin, greatly facili-

tated the writing of § §8—10 of this paper. In addition, M. I. Brin made a number of use-

ful remarks of an editorial naturs.

The author expresses his sincere thanks to M. I. Brin, A. V. Kocergin and E. A. Sataev.

§1. Notation and necessary information from ergodic theory

1. Lebesgue spaces and measurable partitions. All the measure spaces considered

here will be assumed to be Lebesgue spaces with a continuous normalized measure. This

means, from the viewpoint of abstract measure theory, that these spaces are indistinguishable

from the interval [0, 1] with Lebesgue measure. All the necessary information on Lebesgue

spaces and their measurable partitions is presented in §1 of Rohlin's article [18]. Therefore

we will limit ourselves to notation and the description of certain constructions.

The standard notation for a Lebesgue space will be (Χ, μ), where Ζ is a set in which

there is given a measure, and μ is that measure. We denote by 31 (Χ, μ) the σ-algebra of all

measurable sets in X; and, for a measurable partition ξ, 3Ι(ξ) denotes the subalgebra of

3l(X, μ) consisting of all sets which mod 0 consist of elements of ξ (for an explanation of

the term mod 0, see [18]). The quotient space of Ζ by the partition £ is denoted X\^.

If £ j , ξ 2 , · · · a r e measurable partitions, then we denote the product of the first η of

these partitions by ξ χ · . . . · ξη or\y" ξ(·, and the product of all the partitions corresponding-

ly by ξ] · ξ2 · . . . or\/~ ξη; ex, or simply e, denotes the partition of X coinciding mod 0

with the partition into individual points; νχ, or v, denotes the trivial partition in which the

measure of one of the elements is equal to 1. The notation ξ < η denotes that 2l(£) C

A sequence of measurable partitions ξχ, ξ2, • • • is called exhaustive if 31(£η)= %{X, μ),

where the closure is taken in the metric p: for A, Β C %(X, μ), ρ(Α, Β) = μ(ΑΑΒ). A sub-

set 33 C&(X, μ), dense in this metric, is called a basis of the σ-algebra %(X, μ). The nota-

tion ξπ —• e means that %n is an exhaustive sequence of partitions. If, moreover, ξγ < ξ2

< . . . , then we will write ξη /e.
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The direct product of spaces, measures and partitions will be denoted by the symbol x.

The space of nonnegative integer-valued integrable functions on X will be denoted by

Ll{X, μ, Ζ+). Let m G Ll(X, μ, Zj), m ψ 0. We denote

X m , . ) = ( ( j : , s ) : j ; e X , s e ( l , . . . , m(x)}}. (1.1)

Further, let A C Xm^, where for any nautral number s the set As = { χ G X: (x, s) G A }

is measurable, put

CO

Σ ^ w
μ™(.,(Λ) = ϊ=1 (1.2)

ηιάμ

χ

and denote by 2I(Xm ( . ) ; jum(.)) the set of all such A.

Let mG Ll{X, μ, Ζ+) and η G /-1 (*•„,(.) Mm(.>, Z j ) . For χ G X we denote

m(x) /j 3x

Obviously m * n& Ll(X, μ,Ζ%).

We will identify Χ χ { 1} with X, and therefore will sometimes speak of intersections

xnxm[.y

Let | be a measurable partition of X. We denote by | m ( . ) the partition of Xm^ into

all possible sets cs, c G ξ, s = 1, 2, . . ..

We will sometimes call a function m G ./^(X, μ, Zj) a specfunction.

Let 4̂ C ?l(X, μ), μ(^4) > 0 and χΛ the characteristic function of A. In this case we

identify XXA(-) with ^4, and instead of μ χ^(·) and %XA() we will write μΑ and %A .

We will denote the space of almost everywhere positive integrable functions on X by

L\(X, μ). For φ G L\(X, μ), we denote

Further we denote by μφ the normalized measure induced on X? by the measure μ χ λ,

where λ is Lebesgue measure on the line.

Let (Χ, μ) and (Y, v) be Lebesgue spaces, and R: X —>· Υ a mapping such that R~1A

C %(X, μ) for A C$l(Y, v). Then we can define a measure /?#μ on 3ΜΎ, y) by putting

2. Automorphisms of Lebesgue spaces. The basic definitions regarding automorphisms

can be found in §3 of [18]. We, as a rule, will denote automorphisms of Lebesgue spaces

by the symbols Τ and S with various indices. If Τ and S are metrically isomorphic we will

write Τ ~ S.

A measurable partition ξ is called an invariant partition for Γ if Γ?1(|) = 21 (ξ)- I n t m s

case there is a quotient automorphism defined on X\^ which we denote by T\^. Let k be

a natural number. The partition V/=o ^'5 w ^ ^ e denoted ξ1^, or simply £fc, and the parti-

tion VT,*, T''? will be denoted by ξτ. A partition ξ is called a generator (or generating) if

£r = e-



104 Α. Β. ΚΑΤΟΚ

To each automorphism Τ: {Χ, μ) —*• (Χ, μ) and specfunction m G L1(X, μ, Z j ) there

corresponds an automorphism

which is defined in the following way:

Τ (r ,Λ-,Κ*· s + 1 ) · i f s<m(x)>
m<·) I*. s ; ( T / W j } {χ) = m [ n { i > 0 : n i {T'X) > 0 > , if s = m (x). 0 -4

O b v i o u s l y , f o r m G L 1 ( X , μ , Z t ) a n d η G L l ( X m ( Λ, μ , Λ, Ζ Ϊ ) w e h a v e ( Τ , Λ) ,, =

^m,n() ' w n e r e m*n i s defined by (1.3). If m = χΑ, where A C 3l(X, μ), then instead of

TXA(.) we will write T1^. We may suppose that TA acts on A and, by virtue of (1.4), TAx

= Ti(x)x, where i(x) = mn{i > 0: T'JC G 4 } . The automorphism TA is called the derived

(or induced) automorphism of 71 on the set A.

If m(x) > 0 for almost all x G X, then the automorphism T^. ) is called the special

automorphism over Γ constructed relative to m.

We quote two classical results of ergodic theory which will be used repeatedly in

what follows.

THE HALMOS-ROHLIN LEMMA ON UNIFORM APPROXIMATION (see [1], p. 75). Let

Τ: (Χ, μ) —*• (Χ, μ) be an aperiodic automorphism; that is, the measure of the set of per-

iodic points of Τ is zero. Then for any natural number η and any e > 0 there is a measur-

able set A =Ane such that Α η Τ A = 0, i = 1, . . . , η - 1, and μ(υ?=ο T*A)> \ - e.

THE ERGODIC THEOREM. Let A C 2l(X μ), and let Τ be an automorphism. The se-

quence of functions

converges to some function

a) in measure,

b) almost everywhere.

Assertion a) is a simple fact and follows, for example, from the statistical ergodic

theorem of von Neumann (see [1], p. 16). Assertion b) is one of the forms of Birkhoffs

individual ergodic theorem (see [1], p. 18), which has proved to be considerably more

complex than the von Neumann theorem. Everywhere in this article, where the ergodic

theorem is applied, only the convergence in measure is used. However, for the proof of

standardness of group extensions of standard automorphisms (see §11), the almost every-

where convergence is used.

An automorphism Τ is called ergodic if any measurable set invariant relative to Τ has

measure 0 or 1.

3. Automorphisms with discrete spectrum. For / G L2{X, μ) we denote

(UTf)(x)=f(Tx).
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Obviously UT is a unitary operator on L2(X, μ). All the spectral characteristics of UT are

ascribed to T; that is, we speak of proper functions, proper values, spectral types of auto-

morphisms, of automorphisms with discrete spectrum, etc.

We denote by PV(T) the set of proper values of T. If Τ is ergodic, then PV{T) is a

subgroup of the circle S1 = {λ e C, ΙλΙ = 1}. Let Λ be a subgroup of PV(T). We denote

by G(A) the group of all proper functions, of modulus 1, with proper values in Λ. The

linear hull of G(A) consists of all functions constant on the elements of a certain partition,

which we denote by τ?(Λ). If

then

η ( Λ ) = { Δ 1 , . . . . A ? . l f A ? = A0}, TAr=AM, t = 0, 1, . . . . q—\.

VON NEUMANN'S THEOREM on automorphisms with discrete spectrum (see [1], pp.

46—50). Let Τ be a countable subgroup of S1. There is a unique, up to metric isomor-

phism, ergodic automorphism Τ with discrete spectrum for which PV{T) = Γ. As such an

automorphism we may take a transformation of the character group Γ* of the discrete

group Γ, preserving Haar measure, and consisting of multiplication of each character g G

Γ* by the character ir, where ir(y) = γ, γ ε Γ.

Let Q be the group of all roots of 1; that is,

ZL ( 2πίρ
Q = exp—ί-, ρ, ηξΞ

I <7
An ergodic automorphism with discrete spectrum for which PV(T) C Q will be called an

automorphism with rational spectrum. Since any infinite subgroup Γ C Q has the form Γ

= (J~ Zqn, where qn = rx· . . . · rn (such a representation is clearly not unique), it fol-

lows that the group Γ*, which we denote by Z{ r j , is an inverse (projective) limit of

groups Ζ^π ~ "iqn- In particular, the group Z r i corresponding to the sequence rn = r is

the multiplicative group of /--adic integers.

We denote D { , n } : Z { T f i} — Z { , n } , where D { r # j }g = iO z ^ j g, and let nn: Z { ffi}

—> Z | be the natural projection. Obviously the partition r\n = ^ ' ( e ) coincides with

r\{J.qn); moreover, the sequence of partitions {ι?η}, η = 1, 2, . . . , is increasing and ex-

haustive.

PROPOSITION 1.1. Let Τ. (Χ, μ) —> (Χ, μ) be an ergodic automorphism. Suppose

that {ηη}, η = 1, 2, . . . , is an increasing exhaustive sequence of invariant partitions for T,

where ηη consists of qn = rl' . . . · rn elements of positive measure. Then Τ ~ D{rn}

PROOF. From the ergodicity of Τ and the invariance of ηΠ it follows that Τ cy-

clically permutes the elements of r\n, and consequently all these elements have the same

measure. Therefore the proper values of UT, in the invariant subspace of functions con-

stant on the elements of ηη, form the group 1q . Since the sequence r\n is exhaustive, Τ

has discrete spectrum and PV(T) = (J~ Zq . By von Neumann's theorem on discrete

spectrum, Τ ~ D{ r }.
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We note that the proof of the proposition could be completed without reference to

von Neumann's theorem, since, in the case of rational spectrum, metric isomorphism can be

quite simply deduced from spectral isomorphism.

We denote by D the automorphism with rational spectrum for which PV(D) = Q.

The character group of Q is called the group of integer ideals. We will denote the group

by Z. It is easy to show that Ζ = Z^n> ^ = Z{ P n }, where pn is the product of the first η

primes. It is indeed the latter representation we will have in mind later when we consider

the partitions r\n for D.

4. Flows and special representations. For the basic definitions and results concerning

flows, see [19], §1. By flow we will always mean measurable flow on a Lebesgue space.

Flows will as a rule be denoted by the symbols {Tt} or {St}, with various additional in-

dices; metric isomorphism of flows { Tt} and {St} will be denoted { Tt} ~ {St}. Let T:

(Χ, μ) —*• (Χ, μ) be an automorphism and φ G L\(X, μ). In the Lebesgue space (Χ*', μφ)

there is defined a flow called the special flow constructed relative to Τ and φ (see [19]). A

flow {Tt} is called ergodic if any set invariant mod 0 relative to each automorphism Tt, t

G R, has measure 0 or 1. The theorem on special representations for ergodic flows asserts

that any such flow is metrically isomorphic to a special flow constructed relative to some

ergodic automorphism Τ and some function φ.

In this article we barely touch on the case of flows. Using Proposition 2.4, the

reader can easily deduce corollaries, relating to flows, of the results on automorphisms

proved in this paper, even if this is not done in the text.

§2. Monotone equivalence

1. DEFINITION 2.1. Flows {Tt} and {St}, acting on Lebesgue spaces (Xx, μχ) and

(X2, μ2) respectively, are called monotonely equivalent if there is a one-to-one mod 0

measurable mapping R: X1 —• X2 with the following properties:

2.1.1. The measure R^t is equivalent to μ2.

2.1.2. For almost all χ e Χλ and all t e R

where φ(ί, χ) is a monotone increasing function of t.

If flows {St} and {Tt} are monotonely equivalent, we will write {St} ~ { Tt}.

Property 2.1.2 means that the trajectories of {Tt} are mapped onto the trajectories

of {St} with preservation of the natural order relation on the trajectories. Since Ttl + t2 —

Ttl · Tt2, for all i , , ( 2 e R and almost all χ e X x , φ(ί, χ) satisfies

φ {t, + 4, x) = φ (tlt Χ) + φ (/„ ΤΗχ). (2.1)

For j - e i 2 a n d i e R w e denote ψ(ί, y) = φ(ί, Rx). Then the flow {St} = [RTtR~l }

on X2, preserving /?*Mj and metrically isomorphic to {Tt}, has the same trajectories as

{St} and can be written in the form Sty = 5^ ( f y ) y. It follows from (2.1) that, for almost

all y, \p satisfies

* y)•-=$&, i/J+tfeSw,,^). (2.2)
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It can be shown that φ for almost all y (which means also φ for almost all x) is absolutely

continuous relative to t. Therefore we say that {St} is obtained from {5 f} by an absolutely

continuous time change. Therefore Definition 2.1. may be formulated as follows:

Flows {Tt} and {St} are monotonely equivalent if { Tt} is metrically isomorphic to a

flow which is obtained from {St} by an absolutely continuous time change.

The following assertion obviously follows from Definition 2.1.

PROPOSITION 2.1. The relation of monotone equivalence is reflexive, symmetric and

transitive.

PROPOSITION 2.2. Special flows {Tf1} and {Tf2 } over the same automorphism are

monotonely equivalent.

PROOF. Let (y, s) G Χφι. Put R(y, x) = (y, sφ2(y)|φι{y)). Obviously RXlfil =

Χφι, R^1 = (φ1/φ2)μΨ2, and condition 2.1.2 is satisfied. Moreover, φ is piecewise

smooth relative to t.

The partition into ergodic components is preserved under monotone equivalence. In

order to avoid minor complications, due to the fact that nonergodic flows cannot always be

represented in the form of a special flow over an automorphism of a space with finite mea-

sure, we will in what follows restrict ourselves to the case of ergodic flows.

PROPOSITION 2.3. Monotonely equivalent ergodic flows are metrically isomorphic to

special flows over the same automorphism. If the ergodic flows {Tt} and {St} are mono-

tonely equivalent, then the mapping R may be chosen so that, for almost all x0 G X, the

restriction φ(χ, 0 ' { * 0 } X R &ves a diffeomorphism R —• R.

PROOF. 1°. By the theorem on special representations {St} is isomorphic to a special

flow {Tf } over some automorphism T. Then {Tt}~{Tf}. We consider the measurable,

relative to μ^ and /?#Mj (R is the mapping of Xx to X^ which establishes the isomorphism

of {St} and { Tf }), partition ξψ of Χφ into segments c% = {χ} χ [0, ψ (χ)] ,xGX. By

property 2.1.2 almost every segment c% is a segment of a trajectory of {ft} = {RTtR~1 };

moreover, c^x immediately follows c* in the trajectory. The length τ(χ) of a segment cf.

of a trajectory of { ft} is defined by the equation ψ(τ(χ), R~xx) = ψ(χ), and therefore is a

measurable function. We define a mapping U: X^ —* XT, putting U(x, s) = (χ, θ(χ, s)),

where θ(χ, s) is the solution of φ(θ(χ, s), R~*x) = s, 0 < s < φ(χ). Obviously UTt = TT

tU,

and consequently { URTt{UR)~l } = { TJ}. It remains only to prove that (UR)^1 = μτ.

By the ergodicity of {T t} and { Tj} it is sufficient to prove the equivalence of these mea-

sures. The measures induced by these measures in XT\$T are equivalent by 2.1.1 and the

definition of U. The conditional measures of both measures on each segment c7

x have the

form ds/r(x), since both measures are invariant relative to {Tj}. Thus the first part of the

proposition is proved.

2°. It is obviously sufficient to prove the second part of the proposition for special

flows { Tf1 } and { Tf2 } over an ergodic automorphism T. We may suppose that φ1, φ2 ^

C> 0 almost everywhere, since otherwise {Tf1} and { Tf2 } may be represented as special

flows over the induced automorphism TAc, where Ac = {x G Χ: φχ{χ) > C, φ2(χ) ^ C},

and C is chosen so that μ(Α€) > 0.



108 Α. Β. ΚΑΤΟΚ

Let p(t, α, β) be a C°°-function defined for /, α, β G R, α > C, β > C and 0 < t < a,

and having the following properties:

1. ρ(Ο,ο, β ) = 0 .

2. ρ ( α , α , β ) = β .

dp (t, α, β) ^ 2β - C
dt ^200α—100C '

4. 3ρ(ί, α, β)/3ί = 1 for Ο < t < C/4 and α - C/4 < ί < α.

It is not difficult to explicitly construct such a function. Fix α and β, and denote by
κα,β(0 the function inverse to p{t, α, β). For (x, s)& Χφι put

R (x, s) = (x, ρ (s, φι (x), q>2.(*))).

By properties 1, 2 and 3,/? is a one-to-one mapping of Χφι onto Χφΐ; moreover,

μ

By properties 3 and 4, each trajectory of {Tf1} is diffeomorphically mapped onto a tra-

jectory of { r f2} .

2. DEFINITION 2.2. Ergodic automorphisms Τ and S of Lebesgue spaces (X1, μ χ ) and

(X2, μ2), respectively, are called monotonely equivalent if there exists a measurable mapping

R: Xt —> X2 with the following properties:

2.2.1. For almost all χ ε Χ2, the inverse image R~1x consists of not more than a

finite number of points.

2.2.2. The measure /?#jUj is absolutely continuous relative to μ2.

2.2.3. For almost all χ € Χχ, RT(x) = Sn^Rx, where «(x) is a nonnegative measur-

able function.

As in the case of flows, monotone equivalence of Τ and S will be denoted Τ ~ S. A

property of automorphisms or flows will be called monotonely invariant, or a monotone

invariant, if all monotonely equivalent automorphisms or flows either simultaneously possess

the property or do not possess it.

Properties 2.2.1 and 2.2.3 mean that the trajectories of Τ are mapped to the trajector-

ies of S with preservation of order in the trajectory; moreover, "gluing", when a finite seg-

ment of the trajectory of Γ is transformed to one point, and "gaps", when nothing is map-

ped onto some segment of the trajectory of S, are possible.

PROPOSITION 2.4. Let Τ and S be ergodic automorphisms. The following three as-

sertions are equivalent:

1. ΤΆ S.

2. There is a function m £ L1 (X2, μ2, ZQ ) such that Τ ~ Sm^.

3. There are positive functions φέ E L 1 (Xt, μ;.), ι = I, 2, such that {Tf1} ~

{5T2).(2)

PROOF. We derive 2 from 1. Let Τ ~ S. Fory G X2 we put m(y) = \R~ly\, and

we shall prove that Τ ~ Sm^. Indeed, we define a mapping R: Xt —>• (X2)m() by putting

for χ £ X,

(^)The equivalence of 2 and 3 was first proved by Kakutani [ 9 ] .
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Rx = (Rx, max {i: RT'^x = Rx}).

It follows from the definition of m(y) that R is a one-to-one mod 0 mapping. From 2.2.3

and (1.4) it follows that Sm^R = RT. Finally from 2.2.2 and the ergodicity of S it follows

= 0 i 2 ) m ( . ) .

We derive 1 from 2. For this it is sufficient to show that Sm^.-) ~ 5 for 5: (Χ, μ) —>• (X,

μ). For (χ, i ) G I m ( . ) we putR(x, s) = x. Condition 2.2.1 follows from Poincare's recurrence

theorem. Condition 2.2.2 is obvious from the fact that m G Ll{X, μ); finally, condition

2.2.3 follows from the definition of R.

We derive 3 from 2. If m{x) > 1, then obviously

The general case reduces to this, since the automorphisms S and Sm,.y are special over a

common derived automorphism Sx\m-irQy

Finally, let 3 be satisfied. By Propositions 2.2 and 2.3, any special flow over Τ is iso-

morphic to some special flow over S; in particular, {T] } ~ {Sf }.

Let U: X\ —» X% and UT) = Sf U.tGR. For almost all s G [0, 1] the image As G

X% of the segment {s} χ Χχ is well defined, and for almost all y G X2 the number m(y) of

points of intersection of As with c* is well defined. Obviously miy) is a measurable func-

tion and m(y) < i//(y) + 1; therefore m G L1(X2, μ 2, ZQ ). Let

As η c* - {(y, ρ.χ («/)), . . · , (y. Pm

where PjCy) < · • · < Pm(y)(y). Obviously, p^fj) (/ = 1, . . . , m(y)) are measurable func-

tions defined on measurable subsets of X2. On the set As there is a successor mapping, in-

duced by {Sf } and preserving the induced measure. This mapping is isomorphic both to

Τ (by the well-defined restriction IT11^), and to Sm^ by the mapping V: As —*• Xm^,

where V(y, pt(y)) = (y, i). The proposition is proved.

COROLLARY 2.1. 77ie relation of monotone equivalence is reflexive, symmetric and

transitive.

Our basic working criterion for monotone equivalence will be property 2. Property 3

is very useful for deducing corollaries for flows from results about automorphisms. How-

ever, both these properties are attached to a specific one-dimensional situation (actions of Ζ

or R) and cannot be immediately carried over to the case of more general group actions (for

example Z m or R m ) . On the other hand, property 1 can be generalized. We limit ourselves

to the case of Zm (lattices) and give the corresponding definition, which, in particular, allows

the introduction in this case of the notions of "derived" and "special" actions.

DEFINITION 2.3. Let {7*ι • . . . · 7 > } and {5*i • . . . · S*«}, (kl3 . . . , km) G

Zm, be two ergodic actions of Z m by automorphisms of Lebesgue spaces (ATj, μχ) and (X2,

μ 2 ) respectively. These actions are called monotonely equivalent if there exists a measurable

mapping R: Xl —• X2 satisfying conditions 2.2.1, 2.2.2 and

2.3.1. For almost all χ G Χλ, R(Tpc) = S"^ · • • S^m^Rx, where the n){x), i, j =

1, . . . , m, are nonnegative measurable functions.
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If we do not make a distinction between metrically isomorphic actions, then we can

say that the action {S*1 • • • S1^" } is derived from the action {77*1 · · · T%»> } (respectively,

special over this action), if mod 0 we have RX1 = X2 (respectively, mod 0, R~1ex —

Whereas, in condition 2.2.3, n(x) may be an arbitrary measurable function with given

nonnegative values, the functions n'Xx) in 2.3.1 are connected by the following relations

which follow from the commutativity of the automorphisms Tf

n* ( 7 » - « i (x) = n{ (T,x)-n{ (x),

i, j,k=l,2 m.

We will not stop to give any more details on the actions of Zm in this paper.

3. Between classes of monotonely equivalent automorphisms we can introduce a bi-

nary relation which, in a sense, compares the "complexity" of automorphisms.

DEFINITION 2.4. An automorphism Τ majorizes an automorphism S if there is an

automorphism Τχ ~ Τ having an invariant measurable partition ξ such that T11 ^ ~ S. In

this case we will write Τ >S. Obviously if Tl~T2,Sl~ S2 and T1 > Sl, then T2 >S2.

PROPOSITION 2.5. If T> S, then there exists an automorphism T2~ Τ with an in-

variant measurable partition τι such that T2\n ~ S.

PROOF. Let Tx and S act in spaces Χλ and X2, respectively. We have the following

diagram:

,-γ ) Sm(.) ,χ ι Λ- - +

•ΛΖ'πι(-) — {ΛΖ'τη(·) ~~ ζο

Here S = (Sm,.-.)k,.y Put k = k • R · π. Obviously (7\)£(.) has a quotient automorphism

isomorphic to (Smr.y)k^ — S.

The relation >• is transitive, but unfortunately it is unknown whether it is a partial

order relation on monotone equivalence classes. If this is so, then it will follow that weakly

isomorphic (in the sense of Sinai [ 2 0 ] ) automorphisms are monotonely equivalent.

PROPOSITION 2.6. Any ergodic automorphism Τ majorizes any automorphism D{ r n}

(see §1.3).

PROOF. We will apply the Halmos-Rohlin Lemma (see §1.2) inductively. First we

construct a set A j such that
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and put

(=0

Then we apply the Halmos-Rohlin lemma to TA , to construct a set A2 C A t such that

1 = 0

and put

etc. In the limit we obtain a set Β = Π " # „ , μ(δ) > &, and an increasing sequence of in-

v a r i a n t , r e l a t i v e t o TB, p a r t i t i o n s r\k = { T ' A k C\ B , i = 0, 1, . . . ,r^ . . . • rk - 1 } . W e d e -

note 77 = lim i?fc. By Proposition 1.1,

4. DEFINITION 2.5. An automorphism Γ is called standard if T~ D. A flow {7"f}

is caUed standard if {Γ,} # {Dj}.

The standard automorphisms are the basic objects of study in this paper. The follow-

ing theorem shows, from the viewpoint of "complexity" presented in the previous subsec-

tion, that the standard automorphisms, and only they, are very simple.

THEOREM 1. In order that an automorphism S be standard it is necessary and suffi-

cient that any ergodic automorphism maforizes S.

The proof rests upon the following assertion, which follows from Theorem 4 (see § 10).

COROLLARY 10.1. A quotient automorphism of a standard automorphism relative to

any infinite invariant measurable partition is a standard automorphism.

PROOF OF THE THEOREM. By Proposition 2.6 any ergodic automorphism majorizes

any standard automorphism. Now let S be majorized by any ergodic automorphism. Then,

in particular, D )*" S, and by Proposition 2.5 there is a standard automorphism Τ such that

S is metrically isomorphic to a quotient automorphism of T. But then S is standard by the

corollary of Theorem 10.1.

Definition 2.4, Propositions 2.5 and 2.6, and Theorem 1 carry over in a natural and

rather obvious way to the case of flows.

§3. Homological equations

1. There are important sufficient conditions for metric isomorphism for monotonely

equivalent automorphisms and flows. These conditions correspond to the case when the

isomorphism preserves the trajectories of the automorphism on the base.

PROPOSITION 3.1. Let Τ: (Χ, μ) —>• {Χ, μ) be an automorphism (not necessarily er-

godic), and let m,, m2 £ L 1(X, μ, ZQ ). // there is an integer-valued measurable function h
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such that

m2(x)—ml(x)^h{Tx)—h(x), (3.1)

thenTmi{.)~Tm2(.y

PROOF. Let χ GX and m1(x)> 0. We denote

«! (x) = min {n > 0 : tnx (Tnx) φ 0}. (3.2)

It is obvious that almost everywhere «x(x) < °°. Further, let

P(*) = 7 % ( * . 1).

By (3.2),

(TnMx, 1) = Γ ^ )

) ( χ , 1 ) )

and from (3.2) and (3.1) it follows that

nt(x)~l

^ i

Thus
n,(*)-x

Σ ms(r'jr)

p(r'wx)=rm;" (T )° Ρ (χ).

We denote by J{x) the segment of the trajectory of Tm l (.) from p(x) to T^

It follows from (3.3) that the sets/(χ) are pairwise disjoint and cover almost all Xmi(-),

and that the partition of Xmi() into these sets is measurable.

We denote

n2 (x) = min {n > 0 : m2 (Tnx) Φ 0}

and define a mapping i/: Z m l (.) —• X m 2 ( ) by putting for χ e X in the set J(x)

•„ <* ι Χ ( 3 · 4 )

/ = 0, .. ., 2 rn2(Tx)\—l.
V /=β /

It follows from (3.3) and (3.4) that UTmi{.) = Tm^.)U. The measurability of C/is ob-

vious from the fact that all the functions in the definition of J(x) and in (3.4) are mea-

surable. Finally, it is not difficult to show that U^m χ(.) = μ^2(.).

PROPOSITION 3.2. Let Τ: (Χ, μ) —• (Χ, μ) be an automorphism, and let φ1,φ2 ε

L\(X, μ). If there exists a real measurable function h such that

then{Tfi}~{Tfi}.
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PROOF. Since this fact is well known we will restrict ourselves to the construction

of a mapping U: ΧΨι —• ΧΨ2 establishing an isomorphism of the special flows. Namely,

for χ e X put

<=0

By virtue of (3.5), the end of J(x) coincides with the beginning of J(Tx). Put

UTl&rt (x, 0) = (x, t), x e X , 0 < t < φ2 (χ).

Obviously ϋΤφι = ΤΨ2ϋ. The verification of one-to-oneness, measurability and preserva-

tion of measures for U we leave to the reader.

If for functions m,, m2 GL1(X, μ, Z j ) (respectively φ1, φ2 & L\(X, μ)) the equality

(3.1) is satisfied for some integer-valued (respectively (3.5) with some real-valued) measur-

able function h, then we will say that mx and m2 are Z-homologous (respectively, φλ and

ψ2 are R-homologous) over T.

Propositions 3.1 and 3.2 play an important role in the study of monotone equivalence,

since they show how, without loss of generality, one can replace a specfunction by another

which is simpler or, in some sense, more convenient.

A. V. Kocergin, at the request of the author, has proved a series of assertions on equa-

tions of the form (3.1) and (3.5), from which follows the possibility of certain changes of

such a kind. We quote some of his results (see [21]).

PROPOSITION 3.3. Let mx eL1(X, μ, Z j ) and β = fx τηχάμ, and let Τ: (Χ, μ) —•

{Χ, μ) be an automorphism.

1) If β is not an integer, then ml is Z-homologous over Τ to a function taking the

values [β] and [β] + 1.

2) If β is an integer, then for any e > 0 there is a function m2 taking the values β -

1, β, β + 1, and such that \\m2 - β 11/, χ < e, which is Z-homologous over Τ to mx.

3) //m € Ll(X, μ, Zj) , A C X and fA ηιάμ<. β, then mx is Z-homologous over Τ

to a bounded function m2, coinciding with m on A.

PROPOSITION 3.4. Let φ1 & L\(X, μ) and β = Jx m1 άμ, and let Τ: (Χ, μ) —•> (Χ, μ)

be an automorphism.

1) For any e > 0, ψχ is R-homologous over Τ to some function φ2 such that

esssupx|qv— β |<ε .

2) If φ e L1(X, μ), A C X and fA φάμ < β, then ψλ is R-homologous over Τ to some

function φ2, bounded outside A, and coinciding with φ on A.

3) If X is a compact metric space, μ Borel, A closed and φ continuous on A, then

φ2 in 1) and 2) can be chosen to be continuous.

DEFINITION 3.1. Let Τ and S be ergodic automorphisms, and let β > 0. The auto-

morphism 5 is β-monotonely connected with Γ if S ~ Tm^, where / mdμ = β.

Similarly, an ergodic flow {St} is β-monotonely connected with { Tt} if {St} ~ { Tf}

and { Tt} ~ { Tf }, where f φ = β! φ.
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Propositions 3.1 and 3.3 imply the following:

COROLLARY 3.1. Let S be β-monotonely connected with T.

1. If β < 1, then S is metrically isomorphic to a derived automorphism of Τ on some

set of measure β.

2. If β > 1, then S is metrically isomorphic to a special automorphism over T, where

the specfunction m takes the values [j3] and [β] + 1 if β is not an integer, and β- Ι, β and

β + I if β is an integer; and f mdμ = β.

3. If β = 1, then for any e > 0 there is a function m such that S ~ Tm,.^, where m

takes the values 0, 1, 2 and \\m - 1II x < e.

§4. Metrics in sequence spaces

1. Let Ν and η be natural numbers. We denote

Ω*.η = {(ω0, . . . . toM): « > z e { l , 2, . . . , N}, t = 0, 1, . . . , tf—1},

QN = {(. . . , ω_ ν ω0, ων . . . ) : ω;€= {1 Ν}, f e Z}.

V ΩΛΤ ~ " ΩΛΤ,« i s t h e natural projection, π η ( . . . , ω _ 1 ; ω 0 , ω 1 ; . . . ) = ( ω 0 ,

• · · , ^η-ι)· For ω e Ω^ η and / = 1, . . . , Ν, put

where 8kl is the Kronecker delta.

We define two metrics, pH and pM, in the spaces Ω^ Λ which (particularly the latter)

will play an important role later. Let ω = ( ω 0 , . . . , ω Λ _ 1 ) and ω = ( ω 0 , . . . , ω Λ _ 1 ) ,

ω, ω G Ω^ η . Put

ΐ (4-1)

In other words, ρΗ(ω, ω) is equal to the frequency of noncoincident coordinates in

ω and ώ. Formula (4.1) gives a metric on Ω^ η. This is known in probability and infor-

mation theory as the Hamming metric, and has also been widely used in ergodic theory (see,

for example, [6] and [ 2 2 ] ) .

For ω € Ω^ n we denote by S3 (ω) the subset of Ω^ η_χ U Ω^ η+1 consisting of

those elements of Ω^ η — 1 which can be obtained from ω by crossing out a coordinate, and

those elements of Ω^ η + 1 which can be obtained from ω by adding one of the symbols

1, . . . ,N,in any position (front, middle or end). For ω G Ω^ n and ω ε Ω^ m, put

0M (ω, ω) •= min {k : there exist co<°>, . . . , ω<*> (Ξ (J QN,t} • (4.2)

In other words, if we call the deletion or insertion of a symbol in ω an elementary

Λί-operation, then (/^(ω, ω) is equal to the minimal number of sequences of elementary

M-operations which it is necessary to apply in order to obtain ω from ω. Obviously (4.2)

gives a metric o n U ~ = 1 ΩΝ η. Normalizing this metric, we obtain a convenient metric on
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each Ώ,Ν n. For ω, ω e Ω^ η, we put

ΡΜ(ΰ>, ω) = — ΟΜ(β>,ΰ). (4.3)
2n

We note that by a similar procedure we can also describe pH, if we say that an elementary

//-operation is a replacement of any coordinate ω;· by any of the symbols \, . . . ,N. Ob-

viously ρΜ(ω, ω) < ρ Η (ω, ω).

For r > 0 and ω ε Ω^ η, Β^(ω) and 5 ^ ( ω ) denote the closed spheres in Ω^ η of

radius r and center ω in the metrics pH and p M respectively.

Let ω = ( ω 0 <"•>„_,) € Ω^ „ and ω = ( ω 0 > . . . , ωηι_ι) € Ω ^ ^ . We denote

ω * ω = (ω0, · . . , ωη_ι, ω0, . . . , (um-j) ε Ω » , η+η>·

The following inequalities follow immediately from the definitions:

If ω ( 1 ) , ω ( 2 ) 6 Ω ^ η a n d w ( 1 ) , c j ( 2 ) e % _ m , then

PH (ω (1) * ω ( 1 ), ω ( 2 ) * ω(2)) = - ^ - Ρ " ( ω ω , ω«) + — ^ — Ρ Η (ω ( 1 ), ω(2)), (4.4)
τη -\- η τη -{-η

ΡΜ (ω ( 1 ) * ω ( 1 ) , ω ( 2 ) * ω ( 2 )) < -ϋ— Ρ " (ω<», ω<«>) + - ^ - Ρ ^ (ω ( χ ) , ω ( 2 ) ) ; ( 4 . 5 )
m -[-1 m -\- η

If ω ( 0 e Ω^,,. and ω ( 0 e Ω ^ ^ . , ι = 1,2, then

0Μ (ω(1) * ω(1), ω ( 2 ) * ω(2>) < 0Μ (ω(1), ω ( ϊ )) + 0 ^ (ω(1), ω<2)), (4-6)

0Μ {^\^ι\ ω < 2 ) * ω ( 2 ) ) = _ min _ ( 0 * (ω(1), ω) + 0Μ (ω(1\ ω)). (4·7>
ω,ω : ω*ω=ω(2)*ω(2)

Let ω G Ω ^ α, and Λ be a natural number. We denote

co f t = ω * . . . * ω.

k times
k:Let k < η. Using the lexicographic ordering in Ω ^ k, we define a mapping Qn: Ώ.Ν η

<2*(ω0, . . . , ω η-χ) = (<*»ωΟΙ . . .

where
k-l

<*)ω / = ω , + 2 Nl(ati+l— 1), i = 0 , . . . , /ι — Λ . ( 4 . 8 )
( = 1

Each elementary //-operation or Λί-operation over ω ε Ω^ π generates a certain trans-

formation of β*ω. In the case of//-operations this transformation can be represented in

the form of not more than k elementary //-operations in Ω^ Λ n _ f c + j , and in the case of M-

operations, in the form of a composition of not more than 2k + 1 elementary M-operations.

Hence the following inequalities hold:

P" (Qn«>, QnU) < _"^ P" (0), ω), (4.9)
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0Μ (Q*<o, ρ^,ωΧ (2k + 1)0Μ(ω, ω). ( 4 1 0 )

" ' 1~ " ^ ' " ρ Λ ( ω , ω). (4·1 1)
Γ ί /c ^j— 1

We define a mapping A^: Ω k —* Ώ,Ν k . If

fe-l

ω = (ω0, . . . , ωη_χ) e Ω ^ ^ , ω,· = α,·,0 + 2 Λ/7 (au — 1),

we put

ΚΝ(0>) =-" (αο,ο. · · · , ΟΕο.Α-ι» α ι ,ο. · · · ι al,ft-li · • · , αη,ο. · · · » αη,*-ι)·

Obviously

Ρ"(ίΓ^ω, ^ ω ) < Ρ Η ( ω , ω), (4.12)

Ρ ^ (KNU>, ΚΝ®) < Ρ Μ (ω, ω). (4.13)

2. Let ξ = {Cj, . . . , C|11} be a finite ordered measurable partition of (Χ, μ), and Τ

an automorphism of (Χ, μ). Let T'x e c k . ( x ) , / G Z.

We define a mapping φτ ^: X —> Ω | ? , by putting

φτ-,ξ* = ( . . . , Λ_, (x), k0 (χ), ky (x), . . ·). (4.14)

The mapping φτ ^ is sometimes called a coding of the automorphism by ξ, and the pair (T,

| ) itself is called a random process. We also denote ^ ^ = π η ° Ψγ t- The image î J, t* is

called the (Γ, byname οϊ x. We denote

, μ? ι 6 = ( φ ? . Ε ) . μ .

Obviously

μ?,! {(ω0, . . . , ωΒ)} = μ (cMo Π Γ " 1 ^ , Π · · · Π

We will point out some simple relations between the codings of an automorphism

relative to different partitions. Let the elements of | Λ be lexicographically ordered. Then

If we amalgamate (4.15) with (4.9) and (4.11), we obtain without difficulty that

Let ΙξΙ = \η\, τ? = {c?j, . . . , dl(l }. We denote Β = Uj^'fc,· Δ ^,·)· Ι ι i s obvious that for

S
ί = 0
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LEMMA 4.1. Let Τ be ergodic. Then for almost all χ € X

The lemma follows at once from (4.18) and the Birkhoff ergodic theorem.

We denote by R: ΩΝ η —>· Ω^ η the cyclic shift

R (ω0, ωχ, . . . , ωη_ΐ) = (ω^ . . . , ωη_χ, ω0).

Obviously for s £ Ζ, ω £ Ώ.Ν η and χ € Χ

ρ^ω,ωχΙ-?!, (4-19)
η

ΡΗ (φ? ΐ 6 (Tsx), Rsv>) < ΡΗ (ψη

ΤΛχ, ω) + LiL . (4.20)
η

From (4.19) and (4.20) we obtain

Suppose we have a mapping

κ
σ · ΩΛΤ,,Ι -> U

where Ω^ 0 = 0 , This mapping induces a mapping

_ oo oo

σ : U ΩΛΓ,,η 7 ^ U ®N,,n
n = l n=o

by the following rule:

σ (ω χ , . . . , ω π ) = σ (coj * σ (ω2) * . . . * σ (ω π ) .

If ΟΜ(ω{1), ω ( 2 ) ) = 1, then, obviously,

0Μ(σ(ω(1)), σ(ω ( 2 ) ))<Κ

and therefore, by induction,

0M (σ (ωω), σ (ω«)) < /(0 M (ω'1), ω<2>). (4.22)

Let ξ = {c1, . . . , cN], and let m & Ll{X, μ, ZQ ) be constant on the elements of ξ

and take value mi on cf, where m a x 1 < i < i V mi <*K. Then the passage from the coding of

Γ by ξ to the coding of Tm(.) by

im(.) = { c 1 x { l } , . . . . q x i m i } , c 2 x{ l } ,

• · • . c 2 x{m 2 }, . . . , CJV χ {1}, . . . , cNx{mN}}

is described by the mapping σ, where
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§5. Automorphisms with rational spectrum

In the next three sections we successively prove the standardness of automorphisms

satisfying three progressively weaker properties of periodic approximation—rational spectrum,

good approximation and monotone approximation. The basic result is that the last of these

properties is necessary and sufficient for standardness. First we will prove the monotone

equivalence of an automorphism with rational spectrum and the automorphism D (§5),

then the monotone equivalence of any automorphism admitting a good approximation and

some automorphism with rational spectrum (§6), and, finally, the monotone equivalence of

any automorphism admitting a monotone approximation and some automorphism admitting

a good approximation (§7). In §7 we also prove the monotone invariance of the property

of monotone approximation.

PROPOSITION 5.1. 1. If a set A C Z{Pn] consists of elements of some partition r\m,

then the derived automorphism DA is metrically isomorphic to D.

2. If n: Z{p j. —• Z + is constant on the elements of some partition r\m, then the

special automorphism D,,(.) is metrically isomorphic to D.

PROOF. 1. Let A consist of & elements of •c\m. Then, by Proposition 1.1, D^ ~

D| r / j } , where rl = k and rn = Pn + m^i,«=2,3,.... We will prove that PV(OA) = Q.

In fact,

zs 00 OO °° Λ

n=l n=i n = l

2. We denote

n(x)dl.

\

Obviously k is an integer. By Proposition 1.1, Dn(.) ~ D{#-n}> where, as above, rt = k and

rn = pn + m_l, η = 2, 3, . . . . The proposition is proved.

PROPOSITION 5.2. Let {rn},n=l,2,...,be any sequence of natural numbers greater

than 1, and let 0 < β < 1. Then the following assertions are true:

1. There is a set Β C Z{Pn } such that μ(Β) = β and ΌΒ ~ Ό{Γη }.

2. There is a function n: Z[Pn } —> Z + such that 5ztPn i^to^X = P~X and D « ( ) ~

D{r }·

PROOF. We limit ourselves to a detailed proof of the first assertion, since the second

assertion is proved similarly.

We will construct Β in the form Β = Π ο Bn> w h e r e Bo D Bi D B2 D ' ' ' • T h e s e t s

Bn will be constructed inductively so that the following conditions are satisfied:
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(l r t ) There exist integers kn~^ η and sn, a multiple of p j · . . . · pn, such that the set

Bn consists of qkn = rx · . . . · rkn elements of η(Ζ5η).

(2J β<ιίβη)<β + (1ΐ2"χΐ-β).
( 3 n ) For η > 0 the restriction to Bn of a proper function of OB/t_1 with proper

value λ £ Za. is a proper function of D B with proper value λ.

We will show that the satisfaction of these conditions for η = 0, 1 ,2, . . . , implies

the first assertion of the proposition.

In fact, from ( 2 n ) it follows that μ(Β) - β; from (3 Π ) we obtain that

PV(DB)Z) U Z ? { = U Z , ,
n=i " n=i

It also follows from (3n) that the partition T](Zqk ) f° r D B coincides with the restriction to

Β of the partition r?(ZJn) for D. But by ( l n ) , for D we have η(Ζ5η) > ι?(Ζ ρ ι . . .P n), and

therefore for DB we have f](7.q ) / e. Hence DB is an automorphism with rational spec-

trum, and

PV(OB)={J ZQn.
n=l

We now construct the sets Bn. Put Bo = Z{Pn}, s0 = 1 and A:o = 0. Suppose we

have already constructed BQ, Bl, . . . , Bn_l. Choose kn so large that

' " (i - β)

Obviously kn > krJ_1 + 1, and therefore kn > η if kn_l > η - 1. We will prove that for

such a choice of kn there is a natural number / such that

β < ""η < β + 2 - " ( 1 - β ) < (5.2)

In fact, (5.2) is equivalent to

l^li. (5.3)

But the length of the interval

is larger than 2 " '(1 — j3). Therefore inside this interval there is a number which is a

multiple of pnqk _ lqkn, which, by (5.1), is less than 2~"~2(1 - β).

We now put sn = sn_1lpa, where / satisfies (5.2). Let v(Zqk Pn,) for DBn_1 con-

sist of elements Δ " " 1 , . . . , Δ^" 1

 P n h where Δ " " 1 = ΐ?Β*_1Α"~ι. Then put

Bn= ΙΓΔΓ 1 .
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We will verify ( 1 J , (2n) and (3 r t) for this set. Condition ( l n ) is satisfied by construc-

tion since the partition V(Zqkn_lPni) for ΐ>Βη_ι coincides with the restriction to Βη_γ of

V(2Sn_lPnl) for D.

Condition (2n) follows from (5.2), since

Finally, condition (3n) follows from the fact that for any element Δ of η(Ζο ),

for DBn_1 we have

The proposition is proved.

COROLLARY 5.1. Let β > 0 , and let Τ and S be standard automorphisms. Then S is

metrically isomorphic to some derived automorphism TA on some set A of measure β.

PROOF. In view of Corollary 3.1 and Proposition 5.2 it is sufficient to prove that any

standard automorphism Τ is β-monotonely connected with D.

Let Τ ~ Dm(.), where /£ m = y. Choose a specfunction m1 such that D m i ( . ) ~ D

and / Wj = β/y. Let R: Ζ —* Zm l ( . ) implement the isomorphism between D and D m l ( . ) .

For χ G Zm l ( .) we denote m(x) = m(R~lx). We have

Τ — Dm(.) — (Dm,<-))m(.) ~ D(m,*m)(.)·

Since / m1 * m = (β/y) • y = β, it follows that Τ is j3-monotonely connected with D.

§6. Good approximation

DEFINITION 6.1. An automorphism Γ of a Lebesgue space (Χ, μ) admits a good ap-

proximation by periodic transformations (good a.p.t.) if there is a sequence of finite parti-

tions %n = {c^, . . . , cq

n

n = c°, dn}, η = 1, 2, . . . , with the following properties:

6.1.1. μ(ρι

η) = ···=μ(ρ*«).

6.1.2. ξη is an exhaustive sequence.

6.1.3. lim qn • Σ ^ " 1 μ(Το\ Δ cj,+ 1 ) = 0.

The property of good a.p.t. is equivalent to the property called in [ 2 3] a strong ap-

proximation by partitions (see the beginning of the proof of Proposition 6.2), and takes an

intermediate position between the weaker property of approximation by partitions (see [ 2 4]

or [ 8 ]) and the property of cyclic a.p.t. with speed o(l/n) of [ 2 S ] , which corresponds to

the case dn = 0 or, equivalently, qn μ(άη) —> 0 as η —*• °°. A slight modification of the

proofs of Theorems 3.1 and 3.3 of [ 2 5] allows one to prove the following assertion.

PROPOSITION 6.1. An automorphism admitting a good a.p.t. has simple singular spec-

trum and is not mixing.

PROPOSITION 6.2.(3) Let Τ admit a good a.p.t. Then there exists a sequence of parti-

tions r\n = {cn, Tcn, . . . , Ts"~1cn, fn}, η = 1, 2, . . . , with the following properties:

(3)There is a similar assertion in [ ].
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1. τ\η / e as η —*• °°·

3. sn • μ(Τίηοη η cn) —» 1 as η —• ·*>.

PROOF. Put

Cn = Π T-i+1Cln, d'n = X\\J TlCn.
i=l 1=0

Obviously, c'n η T'c'n = 0 , i = 1, . . . , qn - 1; therefore the sets c'n, Tc'n, . . . , T1"'1^

and d'n form a partition, which we denote by ξ'η. Since
qn-i

1 = 1

we have

q On'1

μ (<£) < μ (da) + γ ^ (7 c« Δ c^+1). (6.2)

Since £ n —>• e, by (6.1) and (6.2) ξ'η —• e. In addition

μ {c'n Δ τ\'η)< 2μ ( c i v , ) + μ (T?"c« Δ ci)< 2 ^ μ (TciΔcn

+ 1).
(=0

Thus the sequence ξ'π satisfies the conditions of the definition of a strong approximation by

partitions [2 3 ] .

We choose from %'n a subsequence

(the notation is somewhat modified) such that for each « = 1 , 2 , . . . , there is a family of

natural numbers

/ n ( Z { l , . · · , Sn — Sn-J, (6.3)

for which

μ(ίΔ(υ7"ΟΧ-ΓΤΓ. (6-4)5 n
Λη^

where for each i G In

μ ι . · ' C/i+i <-«/^ ^

4s r ! + 1

From (6.5) it follows that

/„ Π (/» + {»}) = 0 , t = l S " - 1 - (6-6)

Denote

c ^ + x = (J T ' c ^ l
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a n d , i n d u c t i v e l y , f o r k = η — ί , η — 2 , . . . , 1

cn

k

+1 = U Τ'<%*. (6.7)

It follows from (6.3) and (6.6) that for k = 1, . . . , η and / = 1, . . . , sk - 1 we have

T'ck

+l C\C£ + 1 = 0, and consequently the sets

cT, TcT\ ..., TSk-Yk

+\ x\ u"1 rc"k

+1

(=0

form a partition, which we denote by V^+1- Obviously

The definition of the ck

+1 and (6.4) imply that

Therefore, as η —• °° and for fixed k, the sequence of sets ck

n tends to a limit, which we

denote ck, where T'ck Π ck = β, i = 1, . . . , sk — 1. We introduce the partition

=k, , fk=x\ υ 7"cJ.
1 = 0 J

Passing to the limit as η —• °° in (6.7), we obtain

C f t = U ^'Cft+l

and consequently the sequence t]k is monotonely increasing, a n d / f c + 1 C/ f c . Since rfn —* e

as η —*• °° and

C B Δ C S

it follows that τ?Λ / e as η —>· °°. Finally,

μ (71 \ π Δ cB) < 2μ (cn Δ c") + μ (Τ$η

Ο

η

η Δ c«).

The first term has already been estimated. By (6.1) the second term is also o(\/sn). The

proposition is proved.

COROLLARY 6.1. An automorphism Τ admitting a good a.p.t. is standard.

PROOF. By Proposition 5.2 it is sufficient to prove that Τ has a derived automorphism

which is metrically isomorphic to some D{ r ? j}. But this follows at once from Proposition

6.2. In fact, fix any k and put Ak = U/^o 1 T'ck- Obviously, for η > k the restriction of

ηη toAk is invariant relative to TAk. Since (vn)Ak ΐ eAk, by Proposition 1.1 TAk is an

ergodic automorphism with rational spectrum.
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§7. Monotone approximation

Let q G Z + , Nq = {0, 1, . . . , q - 1}, Xq = [0, 1] χ Nq, Xq = [0, 1] χ {i}, i =

0, 1, . . . , q - 1, and let λ be the direct product of Lebesgue measure on [0, 1] and the

measure μ ? on Nq, where μ9({/}) = l/q, i = 0, 1, . . . ,q- 1. Let Τ: (Χ, μ) —• (Χ, μ) be

an automorphism, F C X a. measurable set of positive measure and φ: F —> Xq a measurable

mapping.

DEFINITION 7.1. We will say that the pair (F, ψ) defines a partial monotone structure

for Τ if mod 0 the following conditions are satisfied:

7.1.1. φ is an injective mapping with constant Jacobian; that is, \q(ip(AJ) = α(φ)μ(Α)

for A C F, where α(φ) > 0 is independent of A.

7.1.2. If JCJ, x2 e F, φ(χ^ = {t, m) e Xq and φ(χ2) = {t, m + k), k>0, then x2 =

T'x1 for some / > 0.

7.1.3. If χ e F and φ(χ) = {t, m), then either ψ{ΤΡχ) = (t, m + k), k > 0, or

n{t} χ {m + 1, . . . ,q- 1} = 0 .

For a partial monotone structure (F, φ) we put

where | (F, î ) is the partition of X into F°, . . . , Fq~1 and X\F. Finally we denote by

7Tj and π 2 the natural projections:

nL: Xq->[0,\], n2:Xq-^Nq.

REMARK. Obviously properties 7.1.1—7.1.3 depend only on the derived automorphism

ΤF. Therefore if (X\ μ') is another Lebesgue space withFCXDX', μ(Ρ) > 0, and Τ': Χ'

—>• X' an automorphism such that (T')F = TF, then (F, φ) is a partial monotone structure

for T', where the corresponding constant α (φ) is equal to α(φ) · μ(Ρ)Ιμ'(Ρ).

DEFINITION 7.2. A sequence of partial monotone structures (Fn, φη) for Τ is called

exhaustive if, as η —• °°,

7.2.1 ξ(Ρη,φη)-+ε, and

7.2.2. α φ , , ) — 1.

REMARK. Obviously 7.2.1 implies that μ ^ ) —* 1.

DEFINITION 7.3. An automorphism Τ admits a monotone approximation if there exists

an exhaustive sequence of partial monotone structures for T.

We will now state an approximation criterion for standardness.

THEOREM 2. The following two properties of an automorphism Τ are equivalent:

Τ is a standard automorphism;

Τ admits a monotone approximation.

Theorem 2 follows from Corollary 6.1 and Propositions 7.1 and 7.2 proved below.

PROPOSITION 7.1. The property of admitting a monotone approximation is monotone-

ly invariant.

PROOF. 1°. We first describe a certain reconstruction of X .

Given a function k: Nq —• ZQ , we denote q = LfZl k(i). We define a mapping
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putting for t e [0, 1], / ENq and 0 < / < k(i)

Obviously i//fc(.̂  is an isomorphism (we recall that the measures in (X ) k , ^ and X < are

normalized).

2°. Now let (F, ψ) be a partial monotone structure for Τ and let m e L 1{X, μ, ZQ )

be constant on the elements of %{F, φ). We define a partial monotone structure (/·"-,.),

*m(·)) f o r rm(·) b y P u t t i n 6 *«(•) = *fc(·) ° K> w h e r e k: Xq-+Z+,k = m°<t~\K: F- (.

—> (X(?) fc(.) and κ(χ, Z") = O(x), 0· Obviously,

3°. Let Γ have an exhaustive sequence of partial monotone structures (Fn, ψη), and

let m e i X(X, μ, Z j ) . Fix δ > 0 and choose 7V(6) so that for any η > Ν(δ) there is a

function mn G L 1 ^ , μ, ZQ ), constant on the elements of ?(Fn, <£„) and such that

(7.1)

Here δ/;· is the Kronecker symbol. We will now omit the index n, since we will only be

considering one partial monotone structure.

PutJ? = {(x, 0 e j r w ( . } : x 6 F , m(jc) = m(*)}. By (7.1), μ^ΥΡ) < δ// χ m * . Ob-

viously, F C Λ^ {.) ΓΊ X- ( .) and {Tm^)p = (T'-/.))^; therefore, by the remark after

Definition 7.1, (F, φ^ι.^ρ) is a partial monotone structure for Tm^, where

|

and \{F, φ^^ρ) on F coincides with (%(F, ^ ) ) m ( . ) .

We apply this procedure to each partial monotone structure (Fn, φη) for η > Ν(δ).

Since δ is arbitrary we thus obtain an exhaustive sequence of partial monotone structures

for Tm(.y The proposition is proved.

PROPOSITION 7.2. Let Τ: (Χ, μ) —* (Χ, μ) admit a monotone approximation. Then

there is a function m 6 l ' ( I , μ, Z j ) such that Tm^ admits a good a.p.t.

PROOF. 1°. Let (JF, φ) be a partial monotone structure for T. We introduce some

notation.

For χ € F we put i(x) equal to the index of the set Ft to which χ belongs. In other

words, i(x) = ιτ2(φ(χ))- Further, let j(x) be the number of elements in the set
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φ (Π Π ({-Ί (φ (*))} χ (θ. · · · - »(*)}) c x?.
For r e [0, 1] we denote by s(t) the number of elements in the set <p(F) η ({ί} χ Λ^).

We call t G [0, 1] e-saturated if <i) > (1 - e>?. We denote by >4e = ^ e ( F , </>) C [0, 1] the

set of all e-saturated points, and set Fe = φ~1(Αε χ Nq). Since Xq(ifi(F)) = α(φ) · μ(Ρ), we

have

1 Μ ( 0 (7.2)

(73)

2°. The basis of the proof is the following construction of a "reconstruction" of an

automorphism. Let t &Ae. The inverse image φ~1({ί] χ Ν ) consists of s(t) points, which

we denote yt(t), . . . , ys(t)(t), where /(y,(i)) = i, i = 1, . . . , s(t).

We observe that, by conditions 7.1.2 and 7.1.3,y i + l (t) = Tp^^t) for i = 1, . . . ,

DEFINITION 7.4. An e-reconstruction of T, corresponding to a partial monotone

structure (F, φ), will be a passage from Τ to 7"m6(), where me = meFtf &Ll{X, μ, Z j ) is

defined in the following way: for Λ: £ X

• (7Ve (*)) - i (A·), if A- e= F e , / (x) =̂= s ( ^ (φ (.r))),

/— i(x) + i(TFli(x)), if i G f e , / (Λ:) = S (;tj (φ (X))), (7.4)

0, if

The function m e is measurable by the measurability of Fe and the functions i(x),j(pe) and

s(t). We now define a mapping /: X m (.) —> {0, 1, . . . , ^ — 1}, putting for y = (x, k) G

* m e ( · )

t (i/) = (' (•«) + * — ! ( m o d <7)· (7.5)

A basic property of Tm^.y, obvious in view of (7.4) and (7.5), is

Thus the sets ck = i~1{k), k = 0, I, ... ,q - I, have equal measure and are cyclically per-

muted under the action of Tm (.).

3°. We will show that

7k η Τ? =- pkObviously, FK η F e = F * Π X m e ( .) C cfc. Therefore

Furthermore,

fH,(.)(Fe)> 1— ε. (7.8)
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The inequality follows from the fact that, by the construction of Xme(-), to each set

φ~ι({ί} χ Nq), t G.Ae, consisting of s(t) > (1 - e)q points, we add q - s(t) points (we

count all points of Xme() lying over the y^t), / = ! , . . . , s(t) - 1, q - i{ys^{t)) of the

points lying over ys^(t), and iiy^t)) of the points lying over {Tpef
lyl{t)). (7.6) follows

from (7.7) and (7.8).

4°. We construct an automorphism Tm^ admitting a good a.p.t. as follows: mix) =

lirn^.,, m^"\x), where convergence holds almost everywhere and in Ll and m^ =

rrS"'1^ * nfn^. The automorphism Tm(n)(.\ *s obtained from Γ („_!),.. with the help of

an en-reconstruction corresponding to some partial monotone structure.

We put m^ = 1 and suppose that m^\ . . . , m^ are already constructed. In each

of the spaces Xm(k)(.y fc = 0, 1, . . . , « , we fix bases {A*}, I = 1, 2, . . . , of the σ-alge-

brasSl(Xm( f c), ) ; μ (&)( Λ Since each Tm(ky,) is obtained by ek-reconstruction, it has an

invariant finite partition into the sets c(see 2°), which we denote by %k. Let l| fcl = qk.

By Proposition 7.1 there is an exhaustive sequence of partial monotone structures for

Tm(n)t.y We choose a partial monotone structure {F(-n+1\ φ(·η+1^) and an en+l > 0 so

that the automorphism Tm(n + 1y., obtained from Τ („). by an en+1-reconstruction,

satisfies the following conditions:

(Xm(»t(.) Π

This is possible by (7.3) and (7.8).

(2n). The sets^lf Π ̂ m ( n ) ( - ) , fc, / = 0, . . . , n, are approximate within l/2" + 1 °

by sets consisting of elements of £(F (" + 1 ) , φ(-"+ χ>).

The inequalities ( l n ) imply the convergence o f m ' " ' as η —»• °° in Z , 1 ^ , μ) and almost

everywhere to a function τη. We will show that Tm,.~. admits a good a.p.t. The inequalities

( l n + ; ) , / = 0 , 1 , . . . , imply

m»(.) m»)(., « ^

(7.9)

Hence it follows that Γ , ^ and Γ rrt\,. coincide on the set G , both measures (umf.\ and

μ (rt)(.O of which are greater than 1 - 1/2"~1ή'^. We denote

*" -i
*n~ 1 I my-y^ti'

(=0

We have
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and if χ e Fn, then T^x = 7 ,̂ („)<.)*, i = 0, 1, . . . , qn - 1. Choose a c e ξπ and put

cn = c C\ Fn. Obviously

TVjCn n ^ = 0 . t =- 1, . . . , ?„ — 1, μΏ(.) (cn) >

and

μ̂ ίο {on η τϋ." A ) > VT ·

Consider the partition

- - - ι/,,-ι 9fl~1

%n={Cn, Tm(.)Cn, ..., Tm(.)Cn, X m ( ) \ U 7m(-)Cn}.
<=o

From (7.6), (2n) and (7.9) it follows that %n is an exhaustive sequence. Thus the sequence

%n satisfies conditions 6.1.1—6.1.3.

§8. Generalized almost periodicity

We now pass to the proof of the second and most important criterion for standard-

ness—Theorem 4. This theorem will be proved—more precisely, reduced to Corollary 6.1 —

in this and the next two sections. The assertion of Theorem 4 says that an automorphism

is standard if and only if for any finite partition (or, equivalently, for a generating partition,

or an exhaustive sequence of partitions) sufficiently long pieces of the trajectories of most

points are coded into sequences which are close in the metric pM (the property of M-trivial-

ity; see Definitions 9.1—9.3). The scheme of the proof of Theorem 4 is this. First we

prove Theorem 3, a similar criterion for the existence of a good a.p.t. (//-almost periodi-

city; see Definition 8.3), which is also of independent interest; then we prove the equivalence

of the condition of M-triviality for all partitions, for generating partitions and for exhaustive

sequences of partitions (Propositions 9.2 and 9.3), then the monotone invariance of the first

of these conditions (Proposition 9.4) and, finally, the monotone equivalence of an automor-

phism satisfying this condition with some //-almost periodic automorphism (§10). Theorem

4 then follows at once from Theorem 3 and Corollary 6.1.

Throughout this section ρ and q are natural numbers, e > 0, ξ is a finite ordered par-

tition of (Χ, μ) and Γ is an automorphism of (Χ, μ).

DEFINITION 8.1. A random process (Τ, ξ) is (p, q, e)-periodic if there is an element

ω ( 0 ) G Ωρ ( ? | % | such that Λ " ω ( 0 ) = ω ( 0 ) and

DEFINITION 8.2. A random process (Τ, ξ) is H-almost periodic if for some sequences

pn —*• °°, qn —* °° and en —>· 0 the process is (pn,qn, en)-periodic.

DEFINITION 8.3. An automorphism Τ is H-almost periodic if (Τ, ξ) is //-almost peri-

odic for any partition ξ.

REMARK. It obviously follows from the definition that a quotient automorphism of

an //-almost periodic automorphism relative to an infinite invariant partition is an H-

almost periodic automorphism.
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P R O P O S I T I O N 8.1. Let {ηη}, η = 1,2, ... , be an exhaustive sequence of finite

partitions of (Χ, μ). If there are sequences pn —> °°, qn —> °° and en —• 0 such that the

processes (Τ, ηπ) are (pn, qn, en)-periodic, then Τ is H-almost periodic.

PROOF. Fix ξ = {ci, . . . , cm }, e > 0 and a natural number N. Choose η so that

there is a partition ξπ = {c\, . . . , c'm], %n < ηη, for which

and, in addition, en < e/2, pn> Ν and qn > N. Then (Τ, ξη) is obviously (pn, qn, en)-

periodic. Let ω ( 0 ) e £lm>PnCln be such that Λ< ?«ω ( 0 ) = ω ( 0 ) and

\s==0

Integrating (4.18), we obtain

ί Ρ" (9rf (Λ φΡ4: (Χ))άμ=μ(ΰι (ct Δ Ct)) .
Denote

(8.1) implies

μ (Λε ) < - ? - . (8.3)

Thus if x fi Ae/2 and

then

whence by (8.2) and (8.3) we have

Β?
s—o

Since N, e and ξ are arbitrary, the proposition is proved.

PROPOSITION 8.2. If (Τ, ξ) is H-almost periodic, so is T\%T.

PROOF. Passing from Τ to the quotient automorphism Τ\ςτ, we may suppose

that | is a generating partition; that is, %T = e. Since φ^, TkAx) = φ"^ ^(Tkx), the H-al-

most periodicity of (Τ, ΤΙςξ), for any integer k, follows from the //-almost periodicity of

(T, | ) . Furthermore, from Definition 8.2 and (4.16) it follows that (T, %k) is //-almost

periodic. Since T'kilk~l = \J1k ?% = τ?Λ, it follows that (T, vk) is //-almost periodic.
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But the sequence {i?fc}, k = 1,2, . . . , is exhaustive, and consequently Proposition 8.2 fol-

lows from Proposition 8.1.

THEOREM 3. An automorphism Τ of a Lebesgue space is H-almost periodic if and

only if it admits a good a.p. t.

PROOF 1°. We will derive //-almost periodicity from the property of good a.p.t. Let

{£„}, η = 1, 2, . . . , be the sequence of partitions of Definition 6.1. By virtue of Proposi-

tion 8.1 it is sufficient to verify that for some sequences pn —• °° and ξη —>• 0 the random

processes (T, %n) are (pn, qn, ej1)-periodic.

We denote

and put

Obviously

Rn 2 V (Tcn Δ cT) = On, μ (da) = bn

- η η
k=0 i=0

In ^ In

and consequently

μ (V τ\
V (=0

If χ G 7"'c, ι = 0, 1, . . . , qn - 1, then

where

ΡΛ-1 times

ω < « = ( 1 , . . . , < / „ , . . . , 1 , . . . . q n ) .

Pn times

Putting £n

 = bn + a^, we obtain the result.

2°. We now derive the property of good a.p.t. from //-almost periodicity. A sequence

of partitions satisfying the conditions of Definition 6.1 is easy to construct by a diagonal

process, if for any finite partition η = {bl, . . . , bL } and any δ > 0 we construct τ/δ^ =

{<ij, . . . , dr = d0, d} with the following properties:

μ{ά)<δ, (8.4)

(8-5)

For each / = ! , . . . , / · , there is a /,. G [ 1, . . . , Ζ, ] such that
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(8.6)
i=l

(8 ·7)
ί = 0

Thus, let τ? and δ, 0 < δ < 1/10, be fixed, and let T be //-almost periodic. Choose

ρ > 2δ~2 and q so that for some a/0* S i2L

\s=o

and denote for convenience

in order to do the subsequent construction in X and not in Ω^ .

By (4.21), TA(s, e) C A(s + 1, e + 1/pg).

FixJV> 100δ~V<7, and construct a set β C X so that T'B η Β = 0, j = I, . . . ,N

- 1, and MCU/^O1 ^ * ) > 1 ~ δ 2/2. Let κ 0 denote the partition consisting of the intersections

of the elements of η • Τη γ-Ν+ ι η ^ ^ β ^ ^ χγβ > - ^ further let

The partition η^δ^ satisfying (8.4)-(8.7) will be a refinement of κ.

Fix c G KQ . Denote

/0(c) = minf/ : 0 < / < W — pq, TlcΕΞ Α (θ, — f —N

I V 2 ρ
and by induction set

lk (c) = min // : h.x (c) + pq < / < N—pq, T'c e Α (θ, -^- + —

for as long as lk(c) can be defined. We denote by k(c) the maximal k for which lk(c) is

defined.

Put

k(c) p - i lfc(c)+/i7+i

* = U U U Tlk(c)+'qHc, t--=0, 1 (/-I.
CEX, /ί=0 /—ο

Obviously, 7ϋ(· = di+ j , / = 0, . . . , q ~ 2, and consequently (8.5) is satisfied. Furthermore,

Μ η<ί 0 )3 υ υ υ r"WT'v

c

and therefore

that is, (8.7) is also satisfied.
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It remains to verify the "smallness" of η ( δ ) ; that is, (8.4) and (8.6). Condition (8.4)

easily follows from the next lemma.

LEMMA 8.1. Let c e κ0, lk + 1(c) > I > lk(c) + (p + l)q and I <N~pq. Then

TlcczX\UA(s,±),
s=o I 2 /

PROOF. First, it is obvious that T'c either is wholly contained in one of the sets

A(s, δ/2) or does not intersect one of these sets. Let T!c C A(s, δ/2). Then by (4.21)

_ J. \
PQJ V ' 2 pj

and consequently lk+ x(c) < / - s < /, which contradicts the conditions of the lemma.

Lemma 8.1 implies that

U (υ TN"B) U (X\V T'B) U ( X \ U A (S, AV).
\r=i 1 \ i=o j \ s=o \ i}}

Therefore μ(ά) < Up + pq/N + δ2/2 + δ2/2 < δ.

Finally we verify (8.6). We denote by j s the coordinate of o/ 0 * with index jq +

s, j = 0, . . . , ρ - 1, s = 0, 1, . . . , q - 1. Let c G « 0 and k = 0, 1, . . . , k(c). Since

Λ^ο.Α + .ί.;

amongst the pq sets of equal measure T'k^+'q+sc, j = 0, . . . , ρ - 1, χ = 0, . . . , q - 1,

there are not more than (1 - 8)pq such that T'k(-c^+'q + sc C bj . Summing over k = 0, 1,

. . . , k(c) and over c G KQ, we obtain

δ.

Theorem 3 is proved.

COROLLARY 8.1. A quotient automorphism T\^ of an automorphism Τ admitting a

good a.p.t., relative to an infinite invariant measurable partition %, admits a good a.p.t.

The property of//-almost periodicity, if stated in the language of functions, and not

partitions, turns out to be more general than the property of almost periodicity of functions

which arise as the trajectories of automorphisms with discrete spectrum, similar to the

various classical notions of almost periodicity. We will not discuss the situation in detail

but limit ourselves to a proof of the following assertion.

PROPOSITION 8.3. An ergodic automorphism Τ with discrete spectrum is H-almost

periodic.

PROOF. By von Neumann's theorem on discrete spectrum (see §1.3) we may suppose

that Γ is an ergodic (relative to Haar measure), and hence topologically transitive, translation
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on a compact commutative group G. On G, obviously, there exists a metric ρ invariant

relative to all translations. Proposition 8.3 follows from the next lemma.

LEMMA 8.2. Let X be a compact metric space with an infinite number of elements,

Τ: Χ —*• X a topologically transitive isometry of X, and μ a continuous Borel measure,

positive on any open set and invariant relative to T. Then Τ is an H-almost periodic auto-

morphism of the Lebesgue space (Χ, μ).

PROOF. We will show that there is an exhaustive sequence of finite partitions such

that for any partition η from this sequence

μ ( U (dc)) = 0. f 8 8 )

Fix δ > 0 and some finite cover of X by spheres of radius δ/4. Obviously by in-

creasing the radius of each sphere by a factor of not more than 2, we can obtain that the

measure of the boundary of the new spheres is equal to zero. Let Ui, . . . , Uk be the

elements of the new cover, η,- the partition of Ζ into Ui and XMJj, and η = η1 · . . . · ηΙι.

The diameter of all the elements of η is less than δ, and (8.8) is satisfied.

Thus by Proposition 8.1 it is sufficient to prove //-almost periodicity of (Τ, η) for

any 17 satisfying (8.8). Fix a natural number ρ and e > 0. Let 3η = J J C £ T ? 9C, and let

US(A) be the δ-neighborhood of A C X. Choose δ > 0 so that μ(ί/δ(θτ?)) < e2/4. By

the topological transitivity of Τ there is a point x0 € X\US (9τ?) and a number r such that

the points x0, TxQ, . . . , Tr~1x0 form a δ/2-net in X. Further there is an arbitrarily

large q (we choose e2q/4 > r) such that d(x0, Tqx0) < δ/2ρ (d is the metric in X). Denote

where

o$+I. = cpft, (Tlx0), i = 0, .. ., q-1, / = 0 p - 1 .

Let χ ε X. We will find k(x), depending measurably on x, so that 0 < k(x) < r and

d(Tk(x)x0, χ) < δ/2, and estimate

Obviously

d(Tlv+lx, THx)+ix0)

< d {TiqMx, TiQ+i+kl-x)x0) + d (ΤΗχ)+ίχ0, Tig+i+k(x)x0) < - + -&- < δ.
Δι tip

Therefore T'q+ix and Tk(x) + ix0 can only lie in different elements of η if Tiq+ix

ί/δ(9η). Hence it follows (see (4.18) and (4.20)) that

{ Ρ" (Φπη μ-), Rk(x)(f>{0)) άμ < μ (Ut

χ

and this means
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ύ
\/=o

(we recall that r < q).

Thus (Τ, η) is (p, q, e)-periodic. Since ρ and q can be chosen arbitrarily large and

e > 0 can be chosen arbitrarily small, the lemma is proved.

Theorem 3 and Proposition 8.3 immediately imply

COROLLARY 8.2. An ergodic automorphism with discrete spectrum is standard.

§9. M-trivial processes

Let n be a natural number, ξ = {Cj, . . . , ctt\} a finite ordered measurable partition

of (Χ, μ), Τ an automorphism of (Χ, μ), ω G Ω, ξ , „ and Α(Τ, ξ, n, e, ω) = (&τΛΥ
ιΒ^(ω).

DEFINITION 9.1. A random process (Τ, ξ) is called (η, eytrivial if there is an ω ε

Ω | ̂  | n such that

μ (Α (Τ, Ι, η ε, ω)) = μ?,! (β? (ω)) > 1 - ε . ( 9.ΐ)

The element ω is called an η-standard for the process (Τ, ξ).

The following lemma is a direct corollary of Cebysev's inequality.

LEMMA 9.1. //(Γ, ξ) « («, eytrivial, then

ρΜ(φη

τΛχ, ω) = β, then (Τ, ξ) is (n, ^-trivial.

PROOF. For brevity we write A(T, ξ, η, y, ω) = Ay. For 0 < y < 1 we have

0<

Putting 7 = e and taking the right-hand inequalities together with the assumption μΟ4γ)

1 - e, we obtain

M(<P?,E*, ω ) < ε (1 - ε) -f ε < 2ε.

Putting 7 = j3'/2 and taking the left-hand inequalities, we obtain

β ν ' (1 - μ (Α )) < β, μ (/I L ) > 1 - β ' Λ .

3 2 β 2

PROPOSITION 9.1. // (Τ, ξ) is (η, e)-trivial and m = kn + r, where k > 1 and 0 < r

< η — 1, ί/zen (Τ, ξ) /s (w, (2e + r/m)'/2)-trivial; moreover, as an m-standard we may choose

an element of the form u>k * a, where ω e Ω | ̂  | n and a G Ω | ̂  | ,..

PROOF. We first consider the case r = 0. By (4.6), for χ G X we have
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k-1

'-. — y, PM (Ψτ,ι (Τίηχ), ω).

Since

j P^ (Ψτ,ι (Τίηχ), ω) άμ = j PM (φϊΛχ, ω) djx,

it follows that

j PM ( Φ ^ ' ω*) ^l·1 < j P^ {Ψτ,ιΧ, ω) ίίμ. (9.2)

Applying Lemma 9.1, we obtain the proposition for r = 0. In the general case let ω = ω*

* a £ Ω ι £ ι m , where α e Ω | ̂  | r is any element. Obviously

PM (φ?.ξΧ. ω) < Ρ* (φ&, «>*)+-£-. (9-3)

Comparing (9.2) and (9.3) and applying Lemma 9.1, we obtain the desired result.

DEFINITION 9.2. A random process (Τ, ξ) is called M-trivial if for any e > 0 there is

an «0(e) such that for η > no(e) the process (Τ, ξ) is (n, e)-trivial.

Proposition 9.1 immediately implies

COROLLARY 9.1. If there are sequences kn and en —>· 0 such that (Τ, ξ) is (kn, en)-

trivial, then (Τ, ξ) is M-trivial.

PROPOSITION 9.2. Let {ηπ }, η = 1, 2, . . . , be an exhaustive sequence of finite par-

titions of X. If the random processes (Τ, ηη) are (kn, en)-trivial, where kn —>• °° and en —>•

0, then {Τ, ξ) is M-trivial for any partition ξ = {c1, . . . , cm }.

PROOF. Fix e > 0. Choose η so that for some partition %n = {c\, . . . , c^ } we

have %n < ηπ and

in addition, (Τ, ηη), and consequently (T, | n ) , is (ln, e/2)-trivial for some ln. Repeating the

proof of Proposition 8.1, we obtain that (Τ, ξ) is (ln, e)-trivial. By Corollary 9.1 the process

(Τ, ξ) is Λί-trivial.

PROPOSITION 9.3. Let (Τ, ξ) be M-trivial and η < ξτ a finite partition. Then {Τ, η)

is M-trivial.

PROOF. Passing to the quotient automorphism T\^T, we will suppose that ξ is a gen-

erator. By Proposition 9.2 it is sufficient to prove that the processes (T, £fc) are M-trivial

(compare with the proof of Proposition 8.2). But this follows from the definition ofAf-

triviality, and from (4.15) and (4.17).

COROLLARY 9.2. An M-trivial random process (Τ, ξ) is ergodic.

PROOF. If A e 31(ξΓ) is an invariant set and η = {A, X\A }, then the conditions of
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Definition 9.2 are obviously not satisfied. Thus the ergodicity of (Τ, if) follows from

Proposition 9.3.

PROPOSITION 9.4. // Τ is an automorphism such that (T, | ) is M-trivial for any finite

if, m ε Ll{X, μ, ZQ) and η is any finite partition of Xm^, then {Jm^, η) is M-trivial.

PROOF. Proposition 3.3 implies that m may be supposed to be bounded. By Proposi-

tion 9.2 it is sufficient to prove the Λί-triviality of the processes (Tm^, £ m ( . )) , where ξ is

a finite partition of X and m is constant on the elements of if. Denote

β = | ηιάμ, K = max.m(x).
χ •*

Fix e > 0 and denote

£>n.e= l·
100

By the ergodicity of Τ (Corollary 9.2) we can choose no(e) so that for n > no(e)

(9.4)

Let n > max(2/j3, ΙΟΟΚ/εβ, no(e)) be chosen so that (Τ, ξ) is (n, e(3/100A:)-trivial. In this

case from (9.1), (9.4) and the inequality Mm (.)(i'm(.)) < Κμ(Ε)/β for any Ε C X, it follows

that

> [ f + f ) l > i .
β [\ XOGK I \ 100/C j \ 50

Denote mn(x) = Σ ^ ηι(Γχ). Letj; x = ( x 1 > f c 1 ) , y 2 = (x 2, fc2),y1; >>2 e Xm(.)t and

^ ( 9 · 6 )

Since^, = Τι^^(χί, 1) and^ 2 = T^.){x2, 1), fcj, fc2 < K, by the choice of n we get

^ ( . , ^ (9.7)

therefore for the proof of ([«β], e)-triviality of (Tm^, £ m ( .)) it is sufficient to estimate the

second term on the right side of (9.7). By (4.22) and the remark at the end of §4 we

have

We pass to the estimate:
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Ρ*(Φ?£,.ίΒ,(.,(*ι.1).φίϊ.).6Βΐ(.)(*,.1))

| mn (*ύ ~ [»β1Ι + I mn Μ - [»β]| -τ- { ΟΜ ( Φ Γ ^ ; ! ^ , ) (*ι, 1), « g ^ o <*" *»

< [ η Ρ ] (9.9)

ε , e . ε ε
25 50 5 '" ^ [ηβ] "^ 25 25 50 5

The first inequality follows from the definition of pM, the second from the definition of

Dn e and (9.8), and the third from the conditions on η and (9.6). It follows from (9.6),

(9.7) and (9.9) that (Γ Μ ( . } , t m ( . } ) is ([ηβ], e)-trivial.

LEMMA 9.2. An H-almost periodic random process is M-trivial.

PROOF. Let (T, | ) be (p, q, e)-periodic, and let

Q-X

U J
s=o

By (4.20)

that is, (Τ, ξ) is (pg, e + l/p)-trivial. The lemma now follows from Proposition 9.2.

Lemma 9.2, Theorem 3 and Propositions 9.3 and 9.4 imply

COROLLARY 9.3. // Τ is standard, then for any finite partition % the random process

(Τ, ξ) is M-trivial.

§10. M-triviality and standardness

THEOREM 4. The following assertions are equivalent:

1. The automorphism Τ is standard.

2. For any finite ordered measurable partition ξ the random process (Τ, ξ) is M-trivial.

3. For an exhaustive sequence of partitions { %n}, η - 1, 2, . . . , the random proces-

ses (Τ, ξη) are M-trivial.

4. For any generating partition ξ the random process (Τ, ξ) is M-trivial.

PROOF. The equivalence of properties 2, 3 and 4 has already been proved (Proposi-

tions 9.2 and 9.3). By Corollary 9.3, 2 follows from 1. Thus it remains only to derive 1

from 2. For this we construct an //-almost periodic automorphism monotonely equivalent

to an automorphism satisfying 2, and then use Theorem 3.

LEMMA 10.1. Let Τ: (Χ, μ) —> (Χ, μ) be an automorphism, ξ = {b1, . . . , b^^} a

partition of Χ, ρ and q natural numbers, and e > 0. If (Τ, ξ) is (pq, e)-trivial with a pq-

standard of the form uP, where ω £ Ω ^ | , then there is a function m G Ll(X, μ, ZQ )

and a partition ξ = {b1, . . . ,b\^\} °f ^m() suc^ t n a t

l « — M!t.<4e, (10.1)
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the random process ( 7 ^ ( . } , I) is (p, q, 0)-periodic. (10.3)

PROOF. Fix Ν > lOOpq/e and construct a set Β C X such that T'B η Β = 0, / = 1,

. . . , TV - 1 and M O J ^ O " T ' B ) > * ~ e/100. As in the proof of Theorem 3, we introduce

the partition

x o=(cnfi:cey T~%; X\B) and κ - V* T\-

For brevity we set A(T, %, pq, e, ω ρ ) = Ae. Let c e K 0, c C β. Put

/0 (c) . min {/: 0 < / < ΛΤ—p9: T'c C Λε} ( 1 0 · 4 )

and inductively

4 ) i { / / ) ' / ; < y V — w , T ' C C ^ E } (10.5)

for as long as lk(c) can be defined, say to k = fc(c). Fix c and ζ and consider the set

Tl'{c)+ic, j = 0, . . . , pq - 1. Let </j£^(r''(c)c) = ω ( 0 ) (we omit the dependence on c, /,

Γ, ξ and pi? in the notation). Since Tli{c)c C Λ6, it follows that Ο Μ ( ω ( 0 ) , ω ρ ) < 2epq.

Consider a minimal sequence of 2s < 2ep<7 elementary Λί-operations, transforming ω^0^ to

ω ρ . These elementary M-operations can be realized as follows: first we insert into G / ° \

in suitable positions, s new coordinates and obtain successively ω^1^ G Ω,^ι +1, . . . ,

a/·5) G Ω|ξ | p t , + J ; and then we delete a certain ί coordinates from ω^ and obtain suc-
+ 1 )cessively ω ^ ί + 1 ) e Ω|£| (? + J _ 1 , . . . , ω^2 ί^ = of. Moreover, if the sequence of M-opera-

tions is minimal, then none of the inserted coordinates is deleted.

For each k = 0, 1, . . . , 2s - 1 we will construct a space X^k\ a system of sets cjk^

C X(k),j = 0, 1, . . . , pq - 1 + min(fc, 2x - A;), an automorphism T{k): X{k) —> X{k) and

a partition | ( f e ) = {Z>(jA), . . . , 6 ^ } such that T(k)c(k) = c$\,and c(k) £ 6 (/t). where

ω | λ ) is the /th coordinate of cJ-k\

For A: = 0, put X ( o ) = X and c} 0 ) = Tl^c)+ic, j = 0, . . . , pq - 1, and let Γ ( ο ) and

ξ ( 0 ) coincide with Γ and ξ on U f J ^ 1 C/0). We describe the passage from k to k + I. If

k < s, then c/ f c + 1 ' is obtained from o/fc) by the insertion of some, say the rfcth, coordinate

equal to ω ^ + 1 ) . Let * ( f c + 1 ) = X ^ ( . ) , where for rk Φ 0

m*(v)--- ' ' " rk~u

[ 1 for other x,

and for rk = 0

[1 for other x.

Further, we put r ( f c + 1 ) = Τ$£1(), c<-k+1) = c\k), j = 0, 1, . . . , rt -

c c > ; r f c + i, . . . , w + Λ> 6 ft if / ̂  ω ^ + 1 > ; a n d
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tXk) ι , (ft+i)

For k > s, uy-k+1' is obtained from ω ^ by striking out a coordinate whose index, as

before, we denote by rk. In this case we put x< f c + 1> = X^V^, r(k+1) =

Τ^Χ^,Λ Ak+X)=c(k) ; = 0 1 r - 1 r(fe+D-r(fc) - r nn + lt-
x(k+l)> j i ' ' ' ' • • · ' k ' j ~ f+1' ι ~ fc' " · · ' P"

- 2, | ( f c + 1 > = ξ ( * ) | χ ( Α . + 1 ) . By construction (T(2s\ ξ ( 2 ϊ ) ) has the following property:

;<2S)) = ωρ. (10.6)

Further, T^2s' has the form Τ ̂ ( .) , and, since at each stage we add or remove a set of mea-

sure (in X) equal to the measure of c,

|| in— 1 j | £ 1 < 2s,u (c). (10.7)

From the same considerations we have

u(S(rnw)> i-2«*( C ) . (10·8)
Denote

k(c) pq-1 ι. rc-,+:

Αε= U U U Τ' • c ( 1 0 9 )
CSEK0 i=o y'=o v ' '

We pass to the derived automorphism Tj£e, and repeat the above procedure for each C £ K 0

and ζ = 0, . . . , A:(c). As a result of these reconstructions we obtain an automorphism

ΓΛ (.) and a partition | = {Sj, . . . , S^, }. By virtue of (10.4)-(10.6) and (10.9), for

any χ € J^( . \ we have

Γ <"( · ) ' ξ

for some s € { 0 , 1 < / - l } ; that is, (7^(.), ξ) is (p, ^, 0)-periodic. We note that, in

general, \ Φ ̂ ( . } . We will estimate IIm - 1IIΛ ι. By (10.4), (10.5) and (10.9)

ABZD{ABn[ U T'B)).

Therefore by the choice of Ν and Β it follows that

[—2ε. (10.10)

Summing (10.7) over all c G KQ and / = 0, 1, . . . , k(c), taking account of (10.9) and the

inequality s < epq, we obtain that on Ae

| | m - l | ! L , < e . (10.11)

(10.1) follows from (10.10) and (10.11). (10.2) follows in the same way from (10.8) and

(10.10). The lemma is proved.

L E M M A 1 0 . 2 . L e t Τ: (Χ, μ ) —* (Χ, μ ) be a n a u t o m o r p h i s m , ξ = {cx, . . . ,c^\} a

p a r t i t i o n o f X, m & L l ( X , μ, Z j ) , HOT - l l l ^ i = β, and η - { d 1 , . . . , d l t l } a p a r t i t i o n

°fxm(-)· where
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If(T, ξ) is (p, q, e)-periodic, then (Tm(.y 17) is (p, q, (1 - $)

PROOF. Let Κ C Χ, Κ = {χ: πι(Τ'χ) = 1, i = 0, 1, .
> 1 - 2pqβ, and for χ G Κ

χ, 1).

e + 2pq?> + y%))-periodic.

2pq - 1}. Obviously μ(Κ)

(10.13)

Since £ m ( . } = ξ on K, by (10.12) and (4.18) we have

The assertion of the lemma now follows from the (p, q, e)-periodicity of (Τ, ξ), (10.13),

(10.14) and the inequality μη{.)(Α) < (1 - 0)~V(4) for any A C Ζ η X m ( . } .

The proof of Theorem 4 is now completed by an inductive application of Lemma 10.1,

taking account of Lemma 10.2. Let Τ satisfy 2. For n = 1, 2, . . . , we will construct a

function mn £ L1(X, μ, ZQ ), natural numbers pn, qn and a partition %,·. of Xmn(.) satisfy-

ing the following conditions:

the random process (Tmni.), | ( n ) ) is (pn,qn, 0)-periodic;

mn+1 - ,nn \\Ll

Let w = There is a basis

100 • 2!!p,,<7,,1

}, s = 1, 2, . . . ,

(10.15)

(10.16)

(10.17)

such that the sets

^ η Xmn(-), s = 1, . . . , n, are approximated up to 1/2" by sets of 3 1 ( ? ( Λ ) ) : (10.18)

We will deduce from these conditions the //-almost periodicity of Tm^.y Let Tm^ =

( r m n ( . ) ) - ( . } . It follows from (10.16) that

I K - 1 ||L1 < — i ; ; (io.i9)

therefore (10.15) and Lemma 10.2 imply that ( r m ( . ) ; (ξ ( π ))^ (.)) is (pn, cn, 2~")-periodic.

Finally, (10.18) and (10.19) imply that (L r t))^, (.\ is an exhaustive sequence of parti-

tions of Xmr.), and consequently, by Proposition 8.1, Τ is //-almost periodic.

It only remains for us to construct mn, pn, qn and %<ny For n = 1 we can use Lem-

ma 10.1 directly. We carry out the passage from n to n + 1. We will suppose that for k =

1, . . . , n we have chosen bases 3lfc = {A*}, s = 1, 2, . . . , in the σ-algebras of measurable

sets of the spaces Xmk(.y By Proposition 9.4, for any partition 7? of Xmn^.y, (Tmn(.), η) is

M-trivial. Choose a partition η,η+1>, of Xmn^ so fine that the sets ^4^ Π Xmn^.y k, s = 1,

. . . , n, are approximated by sets of3l(rj, + 1 x) up to 1/100 · 2". We use Proposition 9.1

and choose pn+1 and qn+ 1, satisfying (10.17), so that (Tmn(.),v(n+l)) is (pn+1, qn + 1,
+ 1 + 1

1/800
1pnqn)-tnvi3l with standard of the form <u/" + 1 ,w &\V(n+1)l qn+1-

 w i t h
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the help of Lemma 10.1 we will construct a function mn on Xm (•) and a partition t ( n + 1 )

°f ( ^ m n ( ) ) m n ( · ) · We denote m n + 1 = mn * rhn. By Lemma 10.1, conditions (10.15) and

(10.16) are satisfied for η + 1. By (10.2), any set A* n X m r t + l ( . ) , *, s = 1, . . . , n, is

approximated by a set from 3l(? { n + i )) up to 1/10 · 2". We denote Bk = Ak D Xm{.y and

let As be the sth element of the sequence

51 O 2 D 2 n/J Di-1 o l
1, fll, Oj, . . . , ΰ , , β 2 , . . . , ΰη

The s e t s ^ , 5 = 1, 2, . . . , form a basis of 2l(Xm (. }), and, by (10.19), condition (10.18) is

satisfied for this basis. Theorem 4 is proved.

We mention some immediate corollaries of Theorem 4.

COROLLARY 10.1. A quotient automorphism of a standard automorphism relative to

any infinite invariant measurable partition is a standard automorphism.

PROOF. Condition 2 of Theorem 4 is clearly invariant under the passage to a quotient

automorphism.

COROLLARY 10.2. A projective limit of a sequence of standard automorphisms is a

standard automorphism.

PROOF. Let X = lim Xn, Tn. Xn —> Xn and Τ = lim Tn. Since %(Χη)^%{Χ) and

USl(XJ = %(X), condition 3 is satisfied for T.

COROLLARY 10.3. Let Τ and S be automorphisms of(X, μ), Sk = T, k G Ζ and Τ

standard. Then S is standard.

PROOF. For k = - 1 the assertion follows immediately from the definition of a stan-

dard automorphism. In fact, if Τ ~ D m ( . ) , then T~l ~ (D~ 1 )^(. ) , where m(x) =

m(T~lx). Since D" 1 ~ D, it follows that Τ'1 ~ D. Therefore it is sufficient to consider

the case k > 1. Fix | = { c j , . . . , C | ^ | } and consider !•$ with lexicographic ordering. We

have

<Ps,S =--Κ HI · Φτ\ξ*· (10.20)

Choose η so that (Τ, ξ£) is («, e)-trivial with standard ω 6 Ω, | f c n . Then from (10.20)

and (4.13) it follows that (S, ξ) is (fc · n, e)-trivial with standard Kk^u> ε Ω ^ ^ . By

Theorem 4, 5 is standard.

§11. Concluding remarks

1. From what we have proved in this paper it follows that the class of standard auto-

morphisms is sufficiently broad. Thus, even amongst automorphisms admitting a good ap-

proximation, there are automorphisms with such varied and sometimes "pathological" met-

ric properties (see [25] and [27]) that the metric classification of such automorphisms is

impossible. Corollaries 10.1 — 10.3 show that the class of standard automorphisms, which

is defined as the minimal class of ergodic automorphisms containing D and closed relative

to the operations of passing to an induced or special automorphism, is in fact closed relative

to some other natural operations. Further, based on Theorem 4, we have succeeded in

proving that the class of standard automorphisms is closed relative to the passage to any
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ergodic compact group extension ( 4) or finite extension (see [ 1 7 ] ) . From these statements

we may easily deduce the standardness (in almost any ergodic component) of a rational

power of a standard automorphism, and any, except the identity, automorphism of a

standard flow; also, the standardness of classes of concrete automorphisms and flows, in

particular, ergodic automorphisms with quasi-discrete spectrum [ 2 8 ] , ergodic nilflows [ 2 9 ] ,

and minimal distal automorphisms and flows [ 3 0 ] .

2. The first example of a nonstandard ergodic automorphism with zero entropy was

constructed by Feldman [ 3 7 ] . His construction is inductive and includes in each inductive

step a number of parameters. Let /(«), η = 1, 2, . . . , be any (arbitrarily quickly increas-

ing) sequence of positive numbers. It turns out that by choosing a suitable form of param-

eters in Feldman's construction, it is possible to guarantee that the automorphism admits

an a.p.t. I or a.p.t. II with speed/(«) (see Definition 1.1 of [ 2 S ] ) . Of course these ap-

proximations will not be cyclic.

Feldman's construction (more precisely, a slight modification) admits a smooth reali-

zation. Let ]\f" be a connected manifold of class C°° (not necessarily compact and pos-

sibly with boundary) in which there is a nontrivial C°° action { Tt}, 0 < t < 1, T^ = id, of

Sl, m = dim Af" > 1, and let μ be a finite measure on Af" given in any coordinate neigh-

borhood of positive measure by a smooth density of class C°°, and invariant relative to

{T t}. Then in any Cr-neighborhood of any diffeomoephism Ta it is possible to construct

a C°°-diffeomoephism, preserving μ, ergodic relative to μ and metrically isomorphic to an

automorphism obtained by Feldman's construction. The construction of such a diffeomor-

phism can be realized by a version of the construction in §3 of [ 3 1 ] . The basic difference

is in the replacement of the Second Step, which resulted in the existence of a cyclic a.p.t.

with high speed, by some other condition.

Further, using the methods of [3 2 ] and [3 3 ] , we can construct on any compact

smooth manifold of dimension 3 or higher a C°°-flow, preserving a given smooth positive

measure, ergodic relative to this measure, with zero entropy and which is nonstandard.

From the metric viewpoint such a flow is isomorphic to a special flow over the automor-

phism described in the previous paragraph.

From the purely metric aspect, Feldman's construction also admits various modifica-

tions and generalizations. Thus Rudolph and the author have independently constructed

a family consisting of a continuum of ergodic automorphisms with zero entropy no two of

which are monotonely equivalent or even connected by the majorizing relation (§2).

Rudolph's construction [ 3 8] is based on a nonsymmetry of Feldman's construction, in each

inductive step, relative to time inversion. Our construction uses some general invariants of

monotone equivalence, which we call invariants of entropy type.

Let Γ be an automorphism, \ a partition (that is, as always above, a finite ordered

measurable partition), e and δ positive numbers, and η a natural number. We denote by

NM(T, | , e, δ, «) the minimal number of spheres of radius e in the metric pM ο η Ω ^ ^

whose union has μη

τ ξ-measure not less than 1 - δ. From (4.15) and (4.17) it follows that

for any natural number k

(4)This has also been proved by B. Weiss.
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ΝΜ(Τ, f, ^ - ε, δ,η-k+l) < ΝΜ(Τ, ξ, ε, δ, η). (H-1)

Further, let ξ = (c,, . . . , cm), η = (d,, . . . , d m ) and Σ™ /x(c(. Δ d,) = |3. Then

NM (Τ, η, ε + / β , δ + / β , n) ^ΝΜ(Τ, ξ, ε, δ, η). (11 ·2)

Let m &LX{X, μ, Z Q ) be a bounded function, where/^ ιηάμ = y and max x m(;t) = ̂ T.

Then, if (Γ, | ) is ergodic, there is a sequence a(n) —>· 0 such that

Υ ' ""

Now suppose that we have fixed some sequence of natural numbers nk, k = 1, 2, . . . .

We call a sequence mk equivalent to nk if

m — < lim — < oo.
nh

We now consider the asymptotic character (in k) of the behavior of the values

NM(T, %, δ, mk) for all possible sequences mk equivalent to a given nk as e, δ —*• 0. From

(11.1)—(11.3) it follows that this character does not depend on the choice of generator %

and is invariant relative to monotone equivalence. On passage to a quotient automorphism

the asymptotics can only become "slower". The monotone invariants obtained from these

asymptotics are called invariants of entropy type. Certainly the definition of these invariants

demands concretization, which may depend on the situation in which they are applied. We

will explain how to carry out this concretization for the construction of the examples men-

tioned above. We construct a certain sequence nk such that

lim

then partition this sequence into a countable set of subsequences n'k, ζ = 1, 2, . . . . Further,

we construct a sequence l'k such that l'k —> °° as k —*• °°, and for each sequence Λ = (Xj,

λ2, . . . ), 0 < Xf < 1, an automorphism T^A^ and a generator ξ^Λ^ such that for / = 1,2,

. . . , for any e, δ > 0, and for any sequence m'k equivalent to n'k

Ν (Τ(Λ>, ξ<Λ), ε, δ, mti
lim = 1.

From (11.1)—(11.3) it is simple to deduce that the automorphisms Γ ( Λ ) corresponding to

different sequences Λ are not monotonely equivalent. Further, if 7"^Λι^ ·< T^A^\ then

each term in the sequence Aj does not exceed the corresponding term of Λ2.

In connection with invariants of entropy type we note the following result of Sataev

and the author [ 3 4 ] : if for some sequence nk —*• °°

N(T, Ι, ε, 6, nh)<c(T, ξ, ε, δ),

then (Τ, ξ) is M-trivial. From this follows the standardness of the interval shifting automor-

phisms (see [ 8 ] , Chapter 4, §3) relative to any continuous ergodic Borel invariant measure,
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and also of the C1 -flows on two-dimensional surfaces having a finite number of fixed points

and separatrices relative to ergodic invariant measures whose support contains an open set.

Returning to nonstandard automorphisms, we note that Ornstein and Rudolph have

constructed an example of a standard automorphism Τ for which the cartesian square Τ χ

Τ is ergodic but nonstandard. This example disproves certain conjectures on standard auto-

morphisms which appeared to be quite natural.

We list a series of unsolved problems on the connection between standardness and the

commutativity properties of automorphisms.

Let Τ and S be standard automorphisms, TS = ST, and let TS be ergodic. Is it

standard? Let Τ be standard, S ergodic and TS = ST. Is S standard? Let Τ be standard

and f: S1 —• S1 a Borel function, where the operator f(UT) is generated by some auto-

morphism S. Is S in almost every ergodic component either periodic or standard? Will Τ

be standard if S is standard? From the above, if /(λ) = λ", then the answer to this ques-

tion is positive.

Let {Tn}, η = 1, 2, . . . , be a sequence of commuting standard automorphisms

weakly converging to T. Is Τ in almost every ergodic component either periodic or standard?

3. Sataev [ 1 4] and, simultaneously and independently, Feldman [ 3 7] have defined

a class of random processes (MVWB proceses, of LB processes in the terminology of Feld-

man) and the connected monotonely invariant class (WMB automorphisms). Sataev proved

that a WMB automorphism is metrically isomorphic to a quotient of an automorphism

monotonely equivalent to a Bernoulli automorphism, and in the case of zero entropy MVWB

processes are M-trivial (the latter result was also found by Feldman), and consequently, by

Theorem 4, WMB automorphisms with zero entropy are standard. Weiss has proved [ 3 9]

that a WMB automorphism with positive entropy is monotonely equivalent to a Bernoulli

automorphism.

The theorem on standardness of a quotient with zero entropy of an automorphism

monotonely equivalent to a Bernoulli automorphism allows the construction of many new

examples of .K-automorphisms not isomorphic to, and even not monotonely equivalent to,

a Bernoulli automorphism. The existence of such ^Γ-automorphisms follows from this theo-

rem and the results of Juzvinskii [ 3 S ] . Concrete examples are to be found in Feldman

[ 3 7] and Rudolph [ 3 8] (cf. [ 3 6 ] ) . We note that an approach from the viewpoint of mono-

tone equivalence allows one to positively answer the question of existence of smooth non-

Bernoulli A'-automorphisms, put by Ornstein in the book [ 2 2 ] . The construction uses a

nonstandard ergodic flow with zero entropy, as discussed above.

Let S: Μ —>• Μ be a y-diffeomorphism with a smooth invariant measure μ, {Tt} an

ergodic flow with a smooth invariant measure ν on a manifold TV, / a real positive C°°-

function on M, and fo=fM [άμ.

Consider a diffeomorphism R: Μ χ TV —>· Μ χ Ν preserving μ χ ν:

R(x,y) = (Sx,TfMy). (ΐι.4)

If Μ is a torus, then we can suppose there is a constant C> 0, depending only on S,

such that i f/< C and there is no continuous function h for which

f0, ( 1 L 5 )
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then R is a ^Γ-automorpMsm. In the general case we must replace (11.5) by a somewhat

stronger condition. The result is proved by the methods of the theory of partially hyper-

bolic dynamical systems constructed in [15].

As is easily seen, R is a section of {S{ χ Tt} (recall that {S{} is the special flow over

S). We represent {Tt} as a special flow over some automorphism T. Then {S? χ Tt} has

another section, in which some extension of Τ acts, and consequently R is monotonely

equivalent to this extension. If { Tt} has zero entropy and is not standard, Τ also has these

properties. If R were monotonely equivalent to a Bernoulli automorphism, then no auto-

morphism monotonely equivalent to it could have a nonstandard factor with zero entropy.

4. The relation of majorization, defined in §2, allows the introduction of additional

structure in the set of classes of monotonely equivalent automorphisms. Unfortunately it

is unknown whether this relation is a partial order. By Proposition 2.5 this would follow

from a positive answer to the following question.

Let | and η, ξ > η, be two invariant partitions of an ergodic automorphism T, and let

T~T\V. Is it true that Τ ~ Π { ?

There are two interesting monotone invariants associated with the majorizing relation.

The height of an automorphism T, denoted B(T), is the least upper bound of the power of

ordered sets / such that there is a system of automorphisms { Γ,·}, / ε /, with Τ >• 7} for all

i G / and, if /, / £ / and i > /, then Ti majorizes T-, and 71,· is not monotonely equivalent to

Tj. The capacity of T, denoted E(T), is the power of the set of classes of monotonely

equivalent automorphisms which are majorized by Τ but do not coincide with the class of

T. By Theorem 1 the conditions B(T) = 0 or E(T) = 0 are equivalent to standardness. It

is obvious that B{T) < E(T); and, by Theorem 1, B(T) = 1 implies E(T) = 1. Automor-

phisms for which E(T) = 1 naturally may be regarded as the simplest after the standards

from the viewpoint of monotone equivalence. For a WMB automorphism Τ we have B(T)

= E(T) = 1 if 0 < h(T) < °°, and B(T) = E(T) = 2 for h(T) = °°. It is of interest to know

whether there are automorphisms with zero entropy for which E(T) = 1. If such automor-

phisms exist, then possibly they admit a visible classification up to monotone equivalence.

It is of interest to know what values the invariants B(T) and E(T) can take.

5. As was mentioned in the Introduction and in §2, monotone equivalence can be

defined not only for R and Ζ but also for more general groups. It would be interesting to

translate the results of this paper to Z m (see Definition 2.3). The definition of standard

actions of Zm presents no difficulty. The role of D can be played by the action on Z | 2 j.

χ · · · χ Z{/ } generated by D{2}> D{3}> · · • , ®{im} (h i s t n e z m pnme number, / = 1,

. . . , ni), acting coordinate wise.

Using in Rm the partial order (x1, . . . , xm) <(y1, . . . ,ym) ifxi <yjt we can, by

analogy with Definitions 2.1 and 2.3, define monotone equivalence for actions of R". How-

ever, because of a lack of an analogue of the theorem on special representations for m > 1

the results for Rm cannot be obtained as direct corollaries of the results for Z m . We must

therefore directly define the notions of monotone approximation, M-triviality, MVWB, etc.

directly for "time" Rm and then carry over to this case the results for Ζ and R.

The case of quasi-cyclic time G = U ~ = j 2.q , mentioned in the Introduction, merits

extensive detailed consideration. We mention that Stepin has constructed a dyadic sequence



ΜΟΝΟΤΟΝΕ EQUIVALENCE IN ERGODIC THEORY 145

of partitions e = | j < ξ2 < • · · (see [ s] and [ 6 ]) such that the subsequence | 2 , ξ 4 , ξ 6,

. . . , is isomorphic to the corresponding subsequence of a standard sequence {i?n}, but the

sequences {ξη} and {τ?π} are not isomorphic. It would be interesting to classify sequences

with such a property.

Received 2/MAR/76

BIBLIOGRAPHY

1. Paul R. Halmos, Lectures on ergodic theory. Math. Soc. Japan, Tokyo, 19S6.

2. Donald S. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Advances in Math.

4 (1970), 337-352.

3. H. A. Dye, On groups of measure preserving transformations. I, Araer, J. Math. 81 (1959), 119 —

159.

4. , On groups of measure preserving transformations. II, Amer. J. Math. 85 (1963), 551 —

576.
5. A. M. Versik, Theorem on lacunary isomorphisms of monotonic sequences of partitions,

Funkcional. Anal, i PriloZen. 2 (1968), no. 3, 17-21; English transl. in Functional Anal. Appl. 2 (1968).

6. , Decreasing sequences of measurable partitions and their applications, Dokl. Akad.

Nauk SSSR 193 (1970), 748-751; English transl. in Soviet Math. Dokl. 11 (1970).

7. A. M. Stepin, On entropy invariants of decreasing sequences of measurable partitions, Funkcion-

al. Anal, i Prilozen. S (1971), no. 3, 80-84; English transl. in Functional Anal. Appl. 5 (1971).

8. A. B. Katok, Ja. G. Sinai and A. M. Slepin, The theory of dynamical systems and general

groups of transformations with an invariant measure, Itogi Nauki: Mat. Anal., vol. 13, VINITI, Moscow,

1975, pp. 129-262; English transl. in J. Soviet Math. 7 (1977).

9. Shizuo Kakutani, Induced measure preserving transformations, Proc. Imp. Acad. Tokyo 19

(1943), 635-641.

10. L. M. Abramov, The entropy of a derived automorphism, Dokl. Akad. Nauk SSSR 128

(1959), 647-650. (Russian)

11. R. V. Chacon, Change of velocity in flows, J. Math. Mech. 16 (1966), 417-431.

12. N. A. Friedman and D. S. Ornstein, Ergodic transformations induce mixing transformations,

Advances in Math. 10 (1973), 147-163.

13. G. Hansel, Automorphismes induits et valeurs propres, Z. Wahrscheinlichkeitstheorie und

Verw. Gebiete 25 (1972/73), 155-157.

14. E. A. Sataev, An invariant of monotone equivalence defining quotients of automorphisms

monotonely equivalent to a Bernoulli shift, Fourth Internat. Sympos. Information Theory, Abstracts of

Reports, Part 1, Moscow, 1976. (Russian)

15. M. I. Brin and Ja. B. Pesin, Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR

Ser. Mat. 38 (1974), 170-212; English transl. in Math. USSR Izv. 8 (1974).

16. A. B. Katok, Time change, monotone equivalence and standard dynamical systems, Dokl.

Akad. Nauk SSSR 223 (1975), 789-792; English transl. in Soviet Math. Dokl. 16 (1975).

17. , Properties of standard dynamical systems, Fourth Internat. Sympos. Information

Theory, Abstracts of Reports, Part 1, Moscow, 1976. (Russian)

18. V. A. RohHn, Lectures on the entropy theory of measure-preserving transformations, Uspehi

Mat. Nauk 22 (1967), no. 5 (137), 3-56; English transl. in Russian Math. Surveys 22 (1967).

19. , New progress in the theory of measure-preserving transformations, Uspehi Mat. Nauk

15 (1960), no. 4 (94), 3-26; English transl. in Russian Math. Surveys 15 (1960).

20. Ja. G. Sinai, Weak isomorphism of transformations with invariant measure, Mat. Sb. 63 (105)

(1964), 23-42; English transl. in Amer. Math. Soc. Transl. (2) 57 (1966).

21. A. V. Kocergin, On additive homology equations over dynamical systems, Fourth Internat.

Sympos. Information Theory, Abstracts of Reports, Part 1, Moscow, 1976. (Russian)

22. Donald S. Ornstein, Ergodic theory, randomness, and dynamical systems, Yale Univ. Press,

New Haven, Conn., 1974.

23. R. V. Chacon and T. Schwartzbauer, Commuting point transformations, Z. Wahrscheinlich-

keitstheorie und Verw. Gebiete 11 (1969), 277-287.

24. T. Schwartzbauer, Automorphisms that admit an approximation by periodic translations, Z.

Wahrscheinlichkeitstheorie und Verw. Gebiete 15 (1970), 239-248.



146 Α. Β. ΚΑΤΟΚ

25. Α. Β. Katok and Α. Μ. Stepin, Approximations in ergodic theory, Uspehi Mat. Nauk 22
(1967), no. S (137), 81-106; English transl. in Russian Math. Surveys 22 (1967), no. S.

26. J. R. Baxter, A class of ergodic transformations having simple spectrum, Proc. Amer. Math.
Soc. 27 (1971), 275-279.

27. V. I. Oseledec, Two nonisomorphic dynamical systems with the same simple continuous
spectrum, Funkcional. Anal, i Prilozen. S (1971), no. 3, 75-79; English transl. in Functional Anal.
Appl. 5 (1971).

28. L. M. Abramov, Metric automorphisms with quasi-discrete spectrum, Izv. Akad. Nauk SSSR
Ser. Mat. 26 (1962), 513-530; English transl. in Amer. Math. Soc. Transl. (2) 39 (1964).

29. L. Auslander, L. Green and F. Hahn, Flows on homogeneous spaces, Princeton Univ. Press,
Princeton, N. J., 1963.

30. I. U. Bronstein, Extensions of minimal transformation groups, Stiinca, Kishinev, 1975. (Rus-
sian)

31. D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeo-
morphisms, Trudy Moskov. Mat. Obsc. 23 (1970), 3-36; English transl. in Trans. Moscow Math. Soc.
23 (1970).

32. , New examples of ergodic diffeomorphisms of smooth manifolds, Uspehi Mat. Nauk
25 (1970), no. 4 (154), 173-174. (Russian)

33. D. V. Anosov, Existence of smooth ergodic flows on smooth manifolds, Izv. Akad. Nauk
SSSR Ser. Mat. 38 (1974), 518-545; English transl. in Math. USSR Izv. 8 (1974).

34. A. B. Katok and E. A. Sataev, Standardness of rearrangement automorphisms of segments
and flows on surfaces, Mat. Zametki 20 (1976), 479—488; English transl. in Math. Notes 20 (1976).

35. S. A. JuzvinskiF, Distinction of Κ automorphisms by the scale, Funkcional. Anal, i Prilozen.
7 (1973), no. 4, 70-75; English transl. in Functional Anal. Appl. 7 (1973).

36. Donald S. Ornstein and Paul C. Shields, An uncountable family of K-automorphisms, Ad-
vances in Math. 10 (1973), 63-88.

37. J. Feldman, New K-automorphisms and a problem of Kakutani, Israel J. Math. 24 (1976),
16-38.

38. D. Rudolph, Nonequivalence of measure preserving transformations, Preprint, 1976.
39. B. Weiss, Equivalence of measure preserving transformations. Preprint, 1976.

Translated by D. NEWTON


