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Introduction

l. The idea of approximating metric automorphisms by periodic
transformations arose in the early 1940’s in papers by Halmos. Among the
specific results in this direction we note the theorems of weak and
uniform approximation [22], [23] by means of which Halmos and Rokhlin
proved the well-known theorems on categories [23], [15) (see also [20}).

In recent years a new point of view on approximating automorphisms by
periodic transformations has arisen, which makes it possible to study
individual automorphisms by approximation. A technique for studying metric
automorphisms has been developed, which we call the “method of
approximations ” ., By this method a number of problems of ergodic theory
were solved that had not yielded to other means.

It should be noted that the use of periodic approximations in the
study of an individual automorphism was proposed by Berezin at a seminar
on functional analysis at the Moscow State University in 1964.
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Some of the results of §§8 and 9 were communicated in one of the
meetings at the school on ergodic theory in Khumsan and formed a topic of
fruitful discussion among Bernshtein, Kushnirenko, Margulis, Oseledets,
Rokhlin and Sinai.

2. We assume the reader to be acquainted with the fundamental concepts
of general measure theory, the spectral theory of unitary operators and
ergodic theory. A large part of the necessary material is contained in
881 — 3 of Rokhlin's article ‘Lectures on the entropy theory of measure-
preserving transformations ” . Definitions of or references to concepts
not contained therein are given in the course of this paper.

The authors are grateful to Yu. G. Sinai for valuable advice in the
writing of this paper.

PART 1
THE METHOD OF APPROXIMATIONS
§1. Definitions and examples

l. Let T be an automorphism of the Lebesgue space (M, and f (n) a
monotonic sequence of positive numbers such that f (n) - 0 as h-» .

DEFINITION 1.1, We say that the automorphism T admits an
approximation of the first kind by periodic transformations (a. p. t. I)
with speed f (n) if we can find decompositions ¢, of M into a finite
number g, of measurable sets C,,; CM (i =1, 2, ..., gn) that preserve
the measure of the transformation T, and for which:

Al & - € as'n - ©,

A.2., ‘::n = é'n:
qn
A.3. '21“ (TCr, i XTnCn, i) < f (qn).

1=

If, however, in addition to A.1 and A.2 we have
an

A.3% 21 W(TCr, AT, Cr, ) << f(py) and? T, =T,
1=

where p, is the order of T, on the factor-space M/{,, we say that T admits
an approximation of the second kind by periodic transformations
(a.p.t.IT) with speed f (n).

If, in addition to A.1 - A.3, we have

A.4. T, transposes the elements of the decomposition &, cyclically,
we say that T admits a cyclic a.p.t. with speed f (n). When T admits an
a.p.t.I (or a.p.t.IX or cyclic a.p.t.) with speed g(n) = o(f(n)), it is
convenient to say that T admits an a.p.t.I (or a.p.t.II or cyclic a.p.t.,
respectively) with speed o(f(n)).

A cyclic a.p.t. was defined in 8]: cyelic approximations of a special
form were considered by S.A. Yuzvinskii [27]. The general definition of
an a.p.t.I is given in [6] and of an a.p.t.II in [18].

The notation £, » € denotes that for any measurable set A C ¥ a sequence
of &,-sets Ap can be found such that u(4/M) » 0.
T,=7T,by definition means that strong convergence Ur,=> U holds.
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The property of an automorphism T to admit an a.p.t. with a given
speed f(n) is the metric invariant of it. If f(n) is chosen from certain
standard one-parameter sets of “speeds’”, numerical invariants of an
automorphism can be obtained. If, for example, fi(n) = n™, we put d(T)
equal to the least upper bound of the numbers A such that T admits a
cyclic a.p.t. with speed n™*,

2. Let us illustrate the concept of approximation by examples.

EXAMPLE 1.1. Let T(%) be an automorphism of the interval [0, 1]
defined by T(®*)x = {x + o}, where { x} denotes the fractional part of the
number x. We fix the sequence f(n) and assume that o is irrational and

Pn

that there exists a sequence of irreducible fractions % for which
dn
I —al<flg) (=12, ...).

9n

Let ¢, be a decomposition of [0, 1] into intervals

C. =["_‘_l; ."_] (i=1, «.., qn), and let T, be defined by
4 dn qn
Tnx:{x+.&l_} .
In

It is easily verified that

an
_21 ”(T(a)cn, iATnCn, i) <2an (Qn)
i=
and so the automorphism T(*) admits a cyclic a.p.t. with speed 2nf(n).
Using continued fraction theory [25) we obtain:
1) For any irrational o the automorphism T¢®) admits a cyclic a.p.t.

with speed \/% .
2) For almost all a the automorphism T(*) admits a cyclic a.p.t. with

speed o(%) .

3) For each speed f(n) there exist numbers & for which the
automorphism T(*) admits a cyclic a.p.t. with speed f(n).

EXAMPLE 1.2. Let T be an ergodic automorphism with a discrete
spectrum, the eigenvalues of the operator Ur being roots of unity. We
denote by I, the set of eigenvalues that are roots of unity of degree not
greater than n, and by 9[, the subalgebra in the unital ring L,(})
generated by the eigenfunctions belonging to the eigenvalues from I,. We
know [14] that 9, is the subalgebra of all functions that are constant on
elements of a finite decomposition [, of M. Let us put T, = T. We note
that 9[, is generated by a single eigenfunction and that A, /L, (M). Hence
for any f(n) the automorphism T admits a cyclic a.p.t. with speed f(n).
If, in particular, the group of eigenvalues of T coincides with the group
of roots of unity of degree 2" (n =0, 1, ...), then T can be realized as

an automorphism K of the interval [0, 1] such that [, is a decomposition
into intervals [%li, TLLJ (i=1,...,2".
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REMARK 1.1. The assumption that T is ergodic is essential only
for the cyclicity of the constructed a.p.t.

EXAMPLE 1.3. Let V(%) be a transformation of the square
0¢xgl, 0gy<legivenby V®(x, y) = dx+a}, {x +y}). As in

Example 1.1 we suppose that & is irrational and that a.re irreducible

fractions such that l-z—: — | < f(qn). We fix a sequence of even numbers rp,

where r, » « . Let &, be adecomposition of the square into rectangular elements

1 k k+1 -
0\<x\<-q-r:,-r—n<y5 - (k=0, 1, ..., l)and—n—\x<1.We
put To(x, ) = ({e +”"} {v+ [q"z]}
En = &ne Tudne Tq" {n. The number of elements of &, is Q = rpq,, and

if we denote these elements by C,,; (i =1, ..., Qy), we obtain

Qn
D BV O Cn, ATwCr, ) < 2gnf (gn) + 2 -
n

i=1

, We see that the automorphism

Since for any o we can put f(n) = 1
V5n®
V(%) admits an a.p.t. I with speed %1 , where a, is an arbitrary
preassigned sequence and a, » © .

3. We recall the definition of the weak topology in the group of all
automorphisms of a Lebesgue space determined mod 0. A neighbourhood of the
automorphism T is the intersection of a finite number of sets of the form

{S: W (SEATE) < &},
where E is a measurable set and € > 0. We denote by Ul the topological
group thereby obtained.

We now state a theorem which we shall require repeatedly. It is proved
in a somewhat different form by Yuzvinskii in [27].

THEOREM 1.1. The set of automorphisms admitting a cyclic a.p.t.
with a fixed speed f(n) contains a set of the type Gs that is everywhere
dense in U.

PROOF. We assume that M is the interval [0, 1] with Lebesgue
measure. Let &, be a decomposition of [0, 1] into intervals

Cpi= l—;}—, z—ln-] (i=1, ...,2"), and 1, a set of automorphisms from
U cyclically transposing the C,, ; and linear on each of them.
We put
2n
Go= U AT€U: X p(TCn,8TnCn, ) <[ (2 "1
Tnel,

G, is clearly an open set; therefore G= (] | G. 1is a set of type
n=1 k=n

Gs. All automorphisms in G obviously admit a cyclic a.p.t. with speed
f(ny. We prove that G is everywhere dense in 11, The automorphism K from
§1.2 above belongs to any of the sets G, and therefore to G. Let %8 be a
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set of automorphisms linear on all the elements of any of the &,. We put
Q={TcW: T=SKS1, ScBW}.

Note that (0 C N G,. It is therefore sufficient to prove that € is every-
n

where dense. This follows from the following assertions.

1. The set of automorphisms conjugate to a given aperiodic
automorphism is everywhere dense in 11 ([20], 108).

2. The set 38 is everywhere dense in 11 ([20], 92).

3. The mapping Fg:1l — 11 defined by Fg(T)= T KT is continuous. This
follows from the fact that 1l is a topological group ([20], 89).

In fact, by 1, the set Fy (l)is everywhere dense in ¥ and, by 2 and
3, the set 0= Fg(W) is everywhere dense in Fg(ll) and therefore also in

U. The theorem is proved.

By means of this theorem and of theorems relating approximations to
various properties of automorphisms (ergodicity, mixing, multiplicity of
the spectrum and so on) we shall obtain in §§2 - 4 a number of results,
some well known and some new, on the topological structure of different
sets of automorphisms in the group U.

§2. Approximations, ergodicity and mixing

The fact that the automorphism T admits a.p.t.’s with definite
properties (for example, cyclicity) and with ‘““sufficiently high” speed
enables us to draw conclusions relating to the properties of T such as
ergodicity, mixing and multiplicity of the spectrum.

The following theorem clarifies the question of what speed of
approximation is sufficient for T to be ergodic.

In the proof of this and subsequent theorems, ¢, and T, denote the
decompositions and automorphisms in the definition of an a.p.t., and
Cn,i (1 =1, ..., qp) denotes the elements of the decomposition &,.

I. THEOREM 2.1. If the automorphism T admits a cyclic a.p.t. with

2 .
speed — (6 » 2), then the number of ergodic components of T does not

exceed -g.

PROOF. Suppose that there exist m disjoint invariant sets of
positive measure: Fy, ..., Fy. Let f=min w(F;) (j =1, ..., m) and let
& be fixed > 0. By A.1 for n > ny(9) thei'?n exist sets F{™, ..., F{®
composed of elements of &, and such that 121 P'(FjAan))<6-f. It follows

that an increasing sequence of numbers 0 = ky < kg < ... < kn < kp41= ¢n
and an element C € &, can be found such that
R,
p(TZCHF)> 1—9 , where 7y, ..., 7j, ..., 'm 18 a permutation of
1, 2, coey'm. I
Since the sets Fj are invariant, for any integer r we have
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1—8
qn

R(TTIC () Fy ) = (T2C N Fr ) >

1= o

dn

ki1
Also p(I7MCn F,jH) =

Therefore for 1 < j < m

q_ and hence p(Tij“CﬂF,j)<
n
p (@78 () AT (e = 222 (2.1)
n
This inequality also holds for j = m, because
7o — Tine —

P &
For any element C € ¢n We have
h—1

w (T*CATEC) < .20 w (T (TLC) AT, (TiC)). (2.2)

By (2.1) and (2.2) we obtain

m (2—20)

=2 < w @ (T 0) A (T (140 <

j=1
q,—1 0
< N @@L T <L, @3
dn
i=0
or m < 82 — 28~ . Since & is arbitrary, the theorem is proved.
COROLLARY 2.1. The automorphism T admitting a cyclic a.p.t.

. 2] . .
with speed — for 6 < 4 is ergodic.
The conditions of Theorem 2.1 cannot be relaxed. More precisely:
a) for any integer m > 1 there exists an automorphism K, containing

m ergodic components and admitting a cyclic a.p.t. with speed 2mn+6,

where § is_arbitrary and > 0:
b) there exists an automorphism K., with an infinite (and even
continuous) decomposition into ergodic components and admitting a cyclic

a
a.p.t. with arbitrary speed of the form n—n , where ap, » ®,

Let M= [0, 1] x Z,, where Z, is the space of m points

2mil
{eT (!=1,..., m) with equal measures. We introduce the automorphism
Ky = K x In, where K is the automorphism referred to in Example 1.2 and
I, is the identity transformation of Z,. We put &, = 5, x €, where 7p
is the decomposition of [0, 1] into intervals

4 g
[l2—n, 2%] (i=1,..., 2") and ¢, is the decomposition of Z, into separate

points, and we define
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(Kz, §)  for ST 57
2mi

—_— 271_1
Kz,em 1) for Dyt <z <t

We leave it to the reader to verify the properties A.1 — A.4.

Ko can be taken to be K x I, where I is the identity automorphism
of [0, 1.

2. THEOREM 2.2. If the automorphism T admits an a.p.t. IT with

speed—:; where 0 < 2, then T has no mixing.

PROOF. We assume that p, - ©, since otherwise it follows from
A.3' that Tis periodic. Let Fitj=1, 2, ..., k) be disjoint sets of measure

—;— . We fix 6 > 0. For n > ng(5) sets FJ(") consisting of elements of &,

can be found such that u.(F AF(") 7 . For any integer | we have

2 p(T’Cn iATHC,, ) < |1 2 W (TCp, ;AT Cr, ), (2.4)

where, as always, the Cn,i (t=1, 2, ..., gn) are elements of &,.
Furthermore,
k

qn
D ITEPARR) < X (17Co, 8, ). (2.5)
Therefore
B . X ) )
S n ) o
%”(T Fi0Fy) < X p(T7"F;AT " F™) -

i=

-

R k
+ 2 (I FVAF(M) + 2 B (FVAF) <20-+6.

Hence

=

R R

v

SREENE) =N wF)— 5 D pCFAF)>1—0—2.  (2.6)
i=1 i=1 i=1

We assume that T is mixing and in (2.6) we pass to the limit as p, + o :

Il >1—-6- g . Since & can be taken arbitrarily small and k arbitrarily

large, we have © 3 2, and the theorem is proved.

The following general assertion also follows from the proof of
Theorem 2. 2.

THEOREM 2.3. The automorphism T has no mixing if there exists a

sequence of decompositions &, » € for which CEZE u (TpnCAC)<9<2,
n

where p, » @ as n» o and O does not depend on n,
REMARK 2.1. A consequence of Theorems 1.1 and 2.2 is Rokhlin's
theorem [15): mixing automorphisms form a set of the first category in the
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group U.

§3. Approximations and the spectrum

1. We recall that Ur denotes the unitary operator in L,(M) adjoint
to the automorphism T : Urf(x) = f(Tx). We shall clarify the relation
between the approximability of T and the multiplicity of the spectrum of
Ur.

THEOREM 3.1. [If the automorphism T admits a cyclic a.p.t. with

9
speed — , where © <%, then the spectrum of UT is simple.

In the proof we use the following result from the spectral theory of
operators.

LEMMA 3.1. Let A be a bounded normal operator with a non-simple
spectrum in a Hilbert space H. Then two orthogonal normalized vectors
hy, h, € H can be found such that, for any invariant subspace H' that is
cyclic with respect to A, we have

p(hiv H,)+p(h2, H/)>1

PROOF OF THEOREM 3.1. Let T admit a cyclic a.p.t. with speed
— and suppose that the spectrum of Ur is non-simple. Let C € &,. We
qn_1 . .
introduce the set A-— | T-'(SiC). It is obvious that T'A C SKC for
i=0

k=0, 1, ..., g, — 1. Furthermore,

q,—1 0

n 1—
RA) > w(€) =g 3 (T (SHC) ASy (SO >—2.

r=0 n

Let xc and y4 denote the characteristic functions of the sets C and A,

respectively, H, the subspace of L,(M, 1) consisting of the constant
functions on the elements of &,, and H; the cyclic subspace generated by
the functions y4, that is, the closure of the linear span of the functions
Utfar k=0, £1, £2, ...

Let h € Lo(M, u), || h || = 1. The existence of a sequence of functions
hy > h, hy € Hy, || hn || = 1, follows from A.1. Suppose that {| h — h; || < 6
for n > ny(8). From A.4 it follows that

7,~1
b (2) = hgo baxe (Sa ).

ap—1
We put h,(z)= D) byy, (T*z) and seek a bound for || h — hp ||
k=0

Obviously ||&—#hp||<<8 4| h,—h7|l. Further,
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0,1
m =Bl = || 3 b (e (5770)— ta (742 | =
k=0
4,1 L gt 1
=( 21nPlre - @) = SlnkpEic\ ') <
k=0 k=0

_— qn__1 1 .
<‘V’rﬂ<2|b 2 it 5_1/2
= 2 3 n = 5 -
k=0
We now choose vectors h, and h, as in Lemma 3.1, If n is sufficiently

large then p(h;, H;) < —g—+6, i = 1, 2. Therefore 2 (]/%—}— 6)}1.

Since 6 is arbitrary, we have 0 > ;, and the theorem is proved.
The simplicity of the spectrum of an automorphism admitting a cyclic
a.p.t. with speed o (—35) was first proved by Oseledets.

Yuzvinskii [27] has proved the following interesting theorem.
THEOREM 3.2. The complement of a set of automorphisms with a
simple continuous spectrum is a set of the first category in the group U,

PROOF. It follows from Theorems 1.1 and 3.1 that the set of
automorphisms with a simple spectrum is a set of the first category in

1. But, as was shown by Halmos [23], automorphisms with a discrete
component in the spectrum (that is, automorphisms not possessing weak
mixing) also form a set of the first category in M. So the theorem is
proved.

2. Another group of results on the connection between approximability
and the spectrum are theorems that enable us to draw conclusions on the
structure of an operator Ur of maximal spectral type from the existence
of an approximation. In these theorems it is sufficient to assume an
a.p.t. 1I instead of a cyclic a.p.t.

THEOREM 3.3. I[f the automorphism T admits an a.p.t. II with

speed o (%) , then there is a strong convergence Urn=>E (where E is

the identity operator) in Lo(M).

PROOF. As in Theorem 2.2, we confine ourselves to the case p, » «.
It is sufficient to prove the convergence U;.p "h » h for bounded functions
h € Ly(M). Let H, be defined as in the proof of Theorem 3.1 and let h,
be the projection of the vector h on H,. We assume that | h(x)| < C,
and then also |k, (z)|<<C.

Since _ _ —p —p
| U0k — b || < | U5 0k —UgPohn ||+ || Ug o — ho ||+ || hn— R |

and ||U;"rh—U,Prh, || =||h,—h|—0 8as n-> oby A.1, it is sufficient
to prove that ||U Pk, —h,|—> 0. Note that h, (x)=~rh, (T "nz) outside

q
the set E,= | (I""Cn, i:ACy ;). From (2.4) we have W(Ey) » 0 as n - .
i=1



86 A.B. Katok and A.M. Stepin

Since ||U;pnhn_hn||<26’ V' w(E,), the theorem is proved.

COROLLARY 3.1. [If the automorphism T admits an a.p.t. Il with
speed o (—’1;) , then the maximum spectral type of the operator Ur is
singular.

This assertion is also valid under the assumption that T admits an

[}
a.p.t. II with speed — for B < %

COROLLARY 3.2. The set of automorphisms whose maximum spectral
type subordinates an absolutely continuous type is a set of the first
category in ll.

3. Let h be a vector of the maximum spectral type of the operator Ur
and O be the spectral measure of h. Under the assumptions of Theorem 3.3

we have Qp"do——>1 as n-» o,
1¢1=1
By an investigation of the approach to unity of the Fourier
coefficients of the measure ¢ Corollary 3.1 can be made more precise.
THEOREM 3.4, Let the automorphism T admit an a.p.t. Il with speed

f(my =o (%) and let a, be a fixed sequence such that ap » ®, a > 0.
We put
Go={L: [L]=1 |Tr—1|<<anV P (pm)}-

Then a subsequence n, can be found for which the set G= ﬁ U Gn, has
1=1 k21

full measure with respect to the maximum spectral type of the operator
Ur.

We mentioned in §1.2 that automorphisms with a discrete spectrum whose
eigenvalues are all roots of unity admit an a.p.t. with any preassigned
speed.

The preceding theorem combined with a technical proposition of
measure theory (see Lemma 1 of [18]) enables us to invert this proposition.

THEOREM 3.5, If the automorphism T admits an a.p.t. II with any
speed, then T has a discrete spectrum and all its eigenvalues are roots of
unity,

REMARK 3.1. Since the order p of any permutation of q elements
satisfies the inequality p < a9, where a does not depend on ¢, Theorem 3.5
remains valid if T admits an a.p.t. I with any speed.

REMARK 3.2. From Theorems 3.4 and 3.5 the following well-known
result [16] is easily derived: automorphisms whose maximum spectral types
are subordinate to a fixed type form a set of the first category in U.

§4. Approximations and entropy

We have not yet clarified whether an arbitrary automorphism T admits
an a.p.t. with some speed f(n) = o (1) or other. This question can be
answered in the affirmative. Theorem 4.1, which is proved below, asserts

that any automorphism admits an a.p.t. I with speed % , where a, is an
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arbitrary monotonic sequence of positive numbers tending to o and the
logarithm is binary. This theorem suggests that it is convenient to take

1g » as one of the “standard speed units” for an a.p.t. It turns out

that the existence of an a.p.t. I with such speeds is very closely related
to the entropy of the automorphism (see Theorems 4.2 - 4.4).! As distinct
from the properties considered in §§2 — 3, entropy and approximations (at
least for ergodic automorphisms) completely determine one another.
THEOREM 4.1. Every automorphism admits an a.p.t. T with speed

fgﬁg , where a, is an arbitrary monotonic sequence of positive numbers
tending to w .

PROOF. We confine ourselves to the fundamental case of an aperiodic
automorphism 7. The proof is based on the following simple lemma (see
(201, 99).

LEMMA 4.1. For any aperiodic automorphism T, positive integer n
and € > 0, there exists a measurable set Ap,o such that the sets

n—1
T"An e (k=-0.1, ..., n—1) are disjoint and u< U T"A,w) —1—¢.
k=0

We choose a sequence of decompositions n, » € such that the number k,
of elements of n, beginning with a certain ng satisfies k, < min (a,, n)
and 8lg k, < k,. The meaning of these inequalities becomes clear in the
proof.

For each n > ng we construct the set A, ,-2 of Lemma 4.1. Let , be
the decomposition whose elements are the intersections of the elements of

T *nne oo <T 0 with Ap,n-2 and the complement of A, ,-2. We put
Sn= Mnren - ons oo o '1§n. The elements of &, belonging to TkAn’n-z are

the intersections of this set with the elements of 7knn...7k'n+1nn-
Obviously [, » €. Denoting the number of elements of &, by g,, we have

dn < n(ky) " + k,. We now introduce the periodic automorphism T, :

Tz, if €T " Ap 2 (k=0,1, ..., n—2),

, e, i 2€l"M g, ne
Ty (z) =

n—1
x, if zg U T'A,, p.

h=0
1t is not difficult to see that T,&, = J,. Denoting the elements of 5,
as always, by Cn,i (t=1, ..., qn), we obviously have

a, o

N —2 9 2
Z 2% (Tcn, iATnC/L, i) < 2” (]” \kUO T"An, n—z) <—n-+ n—z N
i=1 =

On the other hand,

The entropy of an automorphism is defined, for example, in [16} and in §9
of Rokhlin’s article “Lectures on the entropy theory of measure-preserving
transformations ” in this issue.
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4 8lgk k u
< (ky)*and = < 72228 n Mn_
qﬂ ( fl) n Ig qn <lg(In lg(]n

REMARK 4.1, It follows incidentally from the proof of Theorem
4.1 that every automorphism admits an a.p.t. II with speed Zn;é for

any constant & > 0.
THEOREM 4.2. An automorphism T with finite entropy h(T) admits

. 6 . . L
an a.p.t. I with speed Zhl: )n+ , where 5 is an arbitrary positive

number.
We give an outline of the proof of this theorem and, to avoid
technical complications, we confine ourselves to the case of ergodic T.
Lemma 4.1 can be strengthened if we require in addition that

u{dn N B) <E_(lﬁ for a given measurable set B C M,
n

We fix the sequence 6, > 0, 8, -~ 0 and suppose, as above, that 75, is
a sequence of finite measurable decompositions and that 7, > € as n-» o,
Let

f _ K

B = \2: 2€C, CENY-Ti,- ... Ty, n(C)<<2 AT nn)+10)} .

According to Macmillan’s theorem [24) u.(Bé")) > 0as k> o. Let k
be chosen sufficiently large so that u(Blg")) < &,. We construct the set
n(BV)

Ag, k-2 satisfying the additional requirement that p (4, ,-() BfY) < -

We introduce the decomposition (, whose elements are the sets

MNAg, k-2, B;g") MAk, k-2 and the intersections with A p-2 of the elements

g

of q,,-T'in,,- -T-knn that are not contained in B . Also we put

En = CneTene von +TF, and
( Tz, if thl_Jz T'Ap, 12,
Tnx::{l T4g, if z¢ lT:h(ilAh, h=2)
ll z, it ngﬁol T Ay, s

Simple calculations show that the (, and the T, satisfy A.1 ~ A.3.
For ergodic automorphisms Theorem 4.2 can be inverted.
THEOREM 4.3. If an ergodic automorphism T admits an a.p.t. [

2]
Tgn ° then WT) < —g“
A somewhat weaker result holds in the general case:
THEOREM 4.4, If an automorphism T admits an a.p.t. [ with speed

fgn’ then h(T)< 6.
These theorems are proved by a more refined argument than in the case

of Theorems 4.1 and 4.2. Theorem 4.3 is proved in [6].
COROLLARY 4.1. A necessary and sufficient condition for an

with speed
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automorphism T to have zero entropy is that T admits an a.p.t.] with

1
lgn
COROLLARY 4.2. If h(T)= w, then a necessary and sufficient
condition for an automorphism T to admit an a.p.t.l with speed f(n)
is that the sequence f(n)lg n is unbounded.
COROLLARY 4.3. If T is an ergodic automorphism, then a new
c(T)

definition of the entropy of T can be stated as follows: WT) = —5

where c(T) is the greatest lower bound of numbers O such that T admits an

speed o

a.p.t. I with speed Tn-

COROLLARY 4.4. 1In the general case we have WT) ¢ ¢(T)<« 2h(T).
It is highly probable, though not yet proved, that for any
automorphism c(T) = 2W(T).

§5. Fibre bundles

I. In this section we apply the results of §§2 - 3 to a special class
of automorphisms, which are a particular case of fibre bundles introduced
by Anzai [1].

DEFINITION 5.1. Let T be an automorphism of the space (M, u);

(M', u') be the direct product of (¥, W) and the two-point space Z, = { +1, —1}

with measures ( —21— , % ) ; and w be a measurable function on M with

values + 1. We call the automorphism T' of the space (M', ') defined by
T (z, j)=(Tz, w(z)j), where €M, j€Z,,

a fibre bundle with base T and function w. Let g(n) be a sequence of
positive numbers.

DEFINITION 5.2, We say that the set F C M is oddly approximated
with respect to a sequence of decompositions n, with speed o [g(n)] if,
for a certain subsequence ni, there exist sets Fjp consisting of an odd
number of elements of the decomposition np), such that u(FAF) = o{g(an)],
where g, is the number of elements of %j,.

In Theorems 5.1 — 5.4 below (, denotes, as before, the sequence of
decompositions in the definition of an a.p.t.

THEOREM 5.1. [If an automorphism T admits a cyclic a.p.t. with

1 .
speed 0 (;) and the function w(x) is such that the set w™*(— 1) 1is
oddly approximated with respect to &, with speed o (—rll—) , then the

spectrum of the operator Ur' is simple (T' is a fibre bundle with base T
and function w).
The proof consists in constructing with respect to an assigned a.p.t.

of an automorphism T a cyclic a.p.t. with speed o (%) for the

automorphism 7’ and applying Theorem 3.1.
Let H; be a subspace of those functions from L,(M') for whichr
f(x, = ) = f(x, j), and let H., be the orthogonal complement to H, in
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LotMY.
THEOREM 5.2. If the propositions of Theorem 5.1 hold, then the
strong convergence

U= —E,

where q, is the number of elements of the decomposition &,, exists in the
subspace H -, .

The proof is analogus to that of Theorem 3.3.

With suitable restrictions on w and the base automorphism T conclusions
can also be drawn concerning the continuity of the spectrum of Ur’.

THEOREM 5.3. [If an automorphism T admits a cyclic a.p.t. with

speed o (71‘—) , the operator Ur has a continuous spectrum and the function
w(x) is such that the sets w™( — 1) and w™*(1) are oddly approximated
with respect to &, with speed o (—%—), then the spectrum of the operator

Ur' is continuous,

PROOF. Let f(x, j) = fi(%) + jf-y(x) and Ur’'f = {f. Then
f1(Tx) = {f1(x) and w(x) f-,(Tx) = {f-,(x). Squaring the second relation
we have 2, (Tx) = {?f2 (x) ; but Ur has a continuous spectrum and there-
fore {2 = 1. In the case ¢ = — 1 we have — w(x) f-,(Tx) = f-,(x), which
contradicts the ergodicity of the fibre bundle with base T and function
— w(x). So the theorem is proved.

Theorems 5.1 and 5.3 are closely related to the question of the
existence of a measurable solution f of the functional equation

f(Tr)=o(2)f (2), (5.1)

where w(x) is a given function.
The method of approximations shows that in a number of cases (5.1)
cannot be solved. One of these results is obtained in §8.

£6. Flows

1. Let {S; ! be a measurable flow on the Lebesgue space (M, Ww). A
measurable flow is defined in [(16].
DEFINITION 6.1. We say that the flow {S;} admits an a.p.t.I

with speed f(n) if a sequence of moments of time t,, decompositions (, of
the space M into a finite number g, of measurable sets

Cn,iCM (L:1, 2,...,qn)

and measure~preserving transformations 7, can be found such that
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AFA & —e as n— oo,
A.F.2. Tngnzgm

o
3

1

A.F.3. ‘ B (S, Cr, i ATHCr, ;) < f (gn),

i
A.F.4. thPn—>00 as n— 0o,

where as in §1 the order of the automorphism T, on the factor space M/&p
is denoted by p,.

Definitions of an a.p.t.II and a cyclic a.p.t. can be similarly
adapted to the case of flows.

The basic theorems of §§2 — 3 carry over without difficulty to the
case of flows and the results may be stated as follows:

THEOREM 6.1. [If the flow{S;} admits a cyclic a.p.t. with speed

g , where 0 » 2, the number of ergodic components of the flow does not
exceed —g .

COROLLARY 6.1. The flow {S;} admitting a cyclic a.p.t. with
speed —g for 8 < 4 is ergodic.

THEOREM 6.2. If the flow{S:} admits an a.p.t.II with speed

6 ..
- » where 6 < 2, then{S;} possesses no mixing.

Let {Ut } be a one-parameter group of unitary operators adjoint to

the flow {S;1}.
THEOREM 6.3. [If the flow{S;} admits a cyclic a.p.t. with speed

g, where 8 < -é— , the spectrum of the group {Us} 1is simple.
THEOREM 6.4. If the flow{S;} admits an a.p.t.Il with speed

0 (—i—) , then there is a strong convergence
Urpt,=E
in LQ(AM).
THEOREM 6.5. [If the flow{S;} adnits an a.p.t.IT with speed

—g— , where B < % , then the spectrum of the group {Us} 1is singular.

Theorems analogous to those of §4 hold if in the definition of an
a.p.t. the condition A.F.3 is replaced by
an
AF3a. D (St CriATrChi) < taf(qn)s ta—>0.
i=1

§7. Some unsolved problems

l. It is known that there exist mixing automorphisms with a singular
spectrum. In connection with Theorem 2.2, it is of interest to know how
these automorphisms are approximated. In particular, can they admit an
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L,
v

2. What can be said about the approximability of the product of two
commuting automorphisms T and S if it is known that T admits an a.p.t.I
with speed fi(n) and S admits an a.p.t.I with speed f,(n)? The theorems of
§4 show that this question is related, in particular, to the problem of
estimating the entropy of the product of commuting automorphisms T and S
in terms of h(T) and Ah(S).

3. Suppose that T admits an a.p.t. with speed f(n) and T, is a factor-
automorphism of the automorphism 7. Is it true that T, also admits an
a.p.t. with speed f(n)? Is it possible at least to estimate the speed of
approximation of T, in terms of f(n)?

4, Suppose that we are given a sequence Q(n), where @(n) > 0 and
@(n) » 0, and that the maximum spectral type o of the operator Ur has
support G of the form

a.p.t.I with speed

G— ﬁi U G, where Gu={G: L] =1, [T%—1|<q (),

and rp is a monotonic sequence of natural numbers. What can be said in
this case about the approximability of the automorphism T ?

5, Is the invariant d(T) of §1 expressible in terms of known metric
invariants of the automorphism? A negative answer to this question is
highly probable.

PART II
APPLICATIONS

§8. Shifting of intervals

]. All spectra of automorphisms not of a probability origin
investigated until recently have turned out to be discrete or countably-
multiple Lebesgue or a combination of these types. Continuous or mixed
non-Lebesgue spectra and, in particular, a simple continuous spectrum have
been found only for automorphisms of a probability origin [19], [5]. i3],
f4]. The results of §§2, 3 provide a systematic approach to the study of
spectral properties of automorphisms with singular spectra. In this section
we apply these results to the so-called automorphisms of ‘“shifting three
intervals ” ., The problem of studying such automorphisms was raised by
Rokhlin and Arnol’'d [2].

2Let 0 < d < B <1. We consider the automorphisms Pz,ﬁ of the
interval [0, 1] defined by

Jx+1—a for 0<z<aq,
Pop@)=4y z-+1—a—B for a<z<<h,
Lx*ﬁ for Bl
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1—a
14+f—a
automorphism [16] induced by the automorphism T(A) in Example 1.1 on the
interval [0, 1 —Bl. Wwe investigate the existence of a discrete component

in the spectrum of the operator ‘{,_,ﬁ adjoint to the automorphism Pa.,,B- Let
Va,pf = {f. Then the function

, B= P

We put A= T+p—a Then Pa,/g is isomorphic to the derived

( j(_ﬁ;—a) for 0<z<<1—B
f*(x):{ z

satisfies the equation

where g@)]* (z) = f* ({z 4 A4}), 8.1)
)_{ £ for 0<2z<1—B,
g(®)= 1 for 1—B<<z 1.

The insolubility of (8.1), and hence the continuity of the spectrum of
Vo, under certain arithmetic limitations on « and B, guarantees Lemma
8.1 to be derived below, which we also use in §9.

We say that the ordered pair of numbers (4, B) in [0, 1] satisfies

condition C if A is irrational and there exists a sequence of irreducible

fractions % such that
n

CA.

n a

C.2. There exists ¢ > 0 such that for all integers r

Let !Ci‘—_-‘Czl:iv 5= Cp. We put

& for 0<z<<1—B,

m(x):l § for 1—B<<z<<1.

LEMMA 8.1. [If the pair of numbers (A, B) satisfies condition C,
then the equation

o (2)h(z)="h ({z -+ A4}) (8.2)

has no measurable solution h(x), where | h(x)| = 1.
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Gp—1
PROOF. We put o, (z)= || o({z+kA4}). If h(x) is a solution of
k=0

(8.2), then "’n(x):’iﬁ%ﬁ”@

continuity of h(x) that ||w,(x) — 1]] » 0 as n > win Ly (0, 1). We show,
on the other hand, that if condition C is satisfied, then for sufficiently
large n we have ||w,(x). — 1|]| > D > 0, where D does not depend on n. We put

It follows from the integral

q,—1
k .
o (z) = kl—lo ® ( {x+-ql)nﬁ ) Obyiously,
lon—1]|> |0k — 1] — || 0% —wn | (8.3)
Let B:%——i—gﬂ, where the r, are integers and 0 ¢ 6, < 1. It follows
n n
from C.2 that ¢ < B8 <1 — ¢. It is easy to verify that
( #Tpsdp—T
(,0: (x):{ 52”@1,1 T for {an}<em

L Zptieh="n=" for {guz) > 0,.

Therefore
M 1 & —
||mn—1n>?l]/§—1[ Ve. (8.4)
Let M, = { x:wh(x) # Wp(x)}. By C.1. we have u(Mp,) > 0 as n» ©, since

[| 0 (2) —on (2) <4V 1 (M), (8.5)
and the lemma now follows from (8.3), (8.4) and (8.5).

If o and B are subject to other arithmetic limitations, then a.p.t.’s
of the automorphism Pa, B can be constructed satisfying the conditions of
Theorems 3.1 and 3.3. Thus:

1—o

|. Suppose that for the pair of numbers A:m and B:%{%2
Pn

sequences of rational numbers T and % exist satisfying the
n

conditions:
8a. p, and gn are relatively prime and g, » ® .

8b, |-En — :0(—11—%).
8c. %——Bl::o(—;;-).

Then the automorphism Py g admits a cyclic a.p.t. with speed o(n™%),
Conditions C and 8.a — 8. c are satisfied for almost all pairs (A, B)
in the sense of Lebesgue measure on the square 0 < A <1, 0 ¢ B¢ 1.
It follows that for almost all (& P) the operator V, g has a simple
continuous singular spectrum and has no mixing. Therefore in addition to
Theorem 3.2 we obtain very simple geometrical examples of automorphisms
with a simple continuous spectrum.
REMARK 8.1, Using Theorem 2.3 it can be shown that the automorphism



Approximations in Ergodic Theory 95

Po, s has no mixing for any o and (.

§9. The group property of the spectrum

Long ago Kolmogorov conjectured (see, for example, [17]) that the
maximum spectral type of an ergodic automorphism always subordinates its
convolution. This property is a natural continual analogue of the group
property of the spectrum of an ergodic automorphism with a discrete
spectrum and was proved by Sinai for a special class of automorphisms
satisfying condition A (see [17])° However, the conjecture is not true
in general. In this section we construct ergodic automorphisms whose
maximum spectral types do not have the ‘‘group property” in the above
sense.

Let (M, 1) be the direct product of the interval [0, 1] with Lebesgue
measure and the two~point space Z, = { + 1, — 1} with measures ("{ —Q)

9 'Yy
(e B)

& =

We consider the automorphism of M that is a fibre bundle in the

sense of §5 with base T(“) and function

—1 for O<ax<Tf

w (2) 1 for fo x<1.

We denote by Uy, gthe unitary operator adjoint to T(2. A), Let LM = H, G H_,
be the direct sum described in §5. The operator U, s has a discrete
spectrum in the subspace H,. Let U, have an eigevector in the subspace
H_, with eigenvalue (. Then, as was shown in §5, there exists a function
f(x) satisfying the equation wﬂ(x)af({x +al) = {f(x). If the pair of
numbers (&, ) satisfies condition C of §8, it follows from Lemma 8.1
that U;,ﬁ has a continuous spectrum in the invariant subspace HI.,. It is

clear that in this case T(a’ﬁ) is ergodic.

Let us suppose further that there exist sequences of fractions
kn ln )
T and e such that :

9a. l, is odd for all n,

9b. oc—i

"y,
lfl

"y

sz o (MG,

9 |p— | o mid).

If these conditions hold, then wg and the approximations of T(a) described
in §1.2 satisfy the conditions of Theorem 5.2. Hence there is strong

convergence Ug'p= —F in H.,. Let h € H., be a normalized vector of
maximum spectral type with respect to U;,ﬁ in H.,, and 0-, the spectral
measure corresponding to h. Then & Mdo o —- —1, as 1 —-00, since
Uylsh~— —h as n—>oco. Vg i=t

LEMMA 9.1. [If the normalized measure ¢ on the unit circle is such
that for a certain sequence ry
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{"do—0C as n— oo
1t1=t

and | (o] = |, {o # 1, then the measures 0 and G * ¢ are mutually singular.
We omit the proof of this lemma. Since U,, g has a discrete spectrum
in the invariant subspace H,, the measure 0 of the maximum spectral type
of Uy, p is of the form 0, + O-,, where 0; is a discrete measure and o-,
a continuous measure mutually singular with its convolution. It follows
that O does not subordinate its convolution.
REMARK 9.1. A similar construction provides an example of an ergodic
flow whose maximum spectral type does not subordinate its convolution

(see [8]).
1

The automorphism T(a' 3) suggested by von Neumann was the first to
which arguments of periodic approximations were applied. Oseledets proved
[12} that the spectrum of the operator U is continuous and raised

o

[

problems concerning its singularity and simplicity which were actively
discussed by participants of the Khumsan school on ergodic theory. Its
singularity was proved by Bernshtein, and by using concepts similar to
approximations Kushnirenko established that numbers o exist for which
U 1 has a simple spectrum.

a3

§10. Square roots of automorphisms

|. An automorphism S is called a square root of an automorphism
T if S2 = T. A square root of T is denoted by \/T The problem of
describing the square roots of a given automorphism T is completely
solvable only when T has a discrete [20], [21) or quasi-discrete spectrum
[11]. until recently it was not even known whether every automorphism
with a continuous spectrum had a square root. In this section we make a
construction, using essentially the results of §§3, 5, showing that this
is not the case.

We say that an automorphism T of the Lebesgue space (M, |) admits a
Z, ~fibering if there exists an involutory automorphism J of M commuting
with T and having no fixed points (mod 0). J is called a Z,-fibering of
T.

LEMMA 10.1. An ergodic automorphism T admits a Z,-fibering if and
only if there exists in the unitary ring Lo(M) a multiplicative involutory
unitary operator U# E commuting with Up.

LEMMA 10.2. If an automorphism T with a simple spectrum admits a

Z,-fibering J, then )/ T(if it exists) also admits J.

PROOF. Both Uy and U}"T‘ commute with U7. Since Ur has a simple

spectrum, both Uy and U, are functions of Ur and therefore Uy commutes
with U ,-7. We then use Lemma 10.1.
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The following statement of Lemma 10.2 is used subsequently: If a
fibre bundle T' with base T has a simple spectrum, then the square root
of T' is also a fibre bundle with base J/T.

2. We now pass to the construction of an automorphism with a
continuous spectrum but having no square root.

Let I! be an automorphism of the Lebesgue space (M, i) having a
continuous spectrum. We assume that R admits a cyclic a.p.t. with speed
o(n~'), the corresponding decompositions &, consisting of an odd number
of elements. The existence of these automorphisms can be established by
modifying the proof of Theorem 1.1; they can also be found among the
automorphisms P, g of §8.

Let S be a fibre bundle with base R and function w operating in the
space M' = M x Z,. Let us suppose that the sets w” (1) and w~(— 1) are
oddly approximated with respect to the decompositions &, with speed
o(n~*), Then in accordance with Theorems 5.1 and 5.3 the automorphism S
has a simple continuous spectrum.

We now consider the fibre bundle T with base S and function
w(y) = w(x, j) = j, where y = (x, j) € M, x € M, j =+ 1, It is clear
that ™ (1) and w™*(— 1) are oddly approximated with respect to the
sequence of decompositions & = &, x €, of the space M’ with speed o(n”™%)
(€, is the decomposition of 7, onto the points + 1 and — 1). Therefore
the automorphism T has a simple continuous spectrum. By Lemma 10.2 the
square root of T is a fibre bundle with base }/'S and function A(y), where

My) must satisfy

AV Sy) M) o). (10.1)
We put J(x, j) = (x, — J). Then o(/y)= —w(y), and by (10.1),
AV STy) ATy = — o). (10.2)
Multiplying (10.1) and (10.2) we obtain
AWAJTy AV Sy) AV STy) = —1. (10.3)

We put My)A(Jy) = 9(y). Since J is a Z,~fibering of S and Shas a
simple spectrum, by Lemma 10.2 the automorphisms J and v/ S commute and

therefore A () Sy)A()/'SJy)=06()/Sy). Then (10.3) takes the form

0 @) 0 () Sy)= —1. (10.4)
Since 6(y) takes the values + 1 and — 1, it follows from (10.4) that
B(y) # const. On the other hand, 6(Sy) = — 6(/ S y) = 6(y), which

contradicts the ergodicity of S.

3. In the above construction we required w to be a function with
values + 1 such that »~2(1) and »~(—~ 1) were oddly approximated with
speed o(n™') with respect to a sequence of decompositions &,. We now state
a proposition showing that there are “sufficiently many” such functions.
Let (M, u) be a Lebesgue space and n and m measurable functions on M
taking the values * 1. We put p(m, n) = w(m~*(1)An"1(1)). The space of
functions on M with values + 1 and metric p is denoted by B.

LEMMA 10.3. Let {, be a sequence of decompositions of ! tending to
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€. The set of functions w € B such that w™ (1) and w™t(— 1) are oddly
approximated with respect to -the sequence &, with given speed f(n)
contains a set of the type Gs everywhere dense in B,

REMARK 10.1. If Py g in §8 is taken to be the automorphism R in
the above construction it is obviously not difficult to construct a
function with the required properties.

&€l11. Flows on a two-dimensional torus

In the final two sections we apply methods developed in Part I to
classical dynamical systems. In this section we investigate the spectral
properties of flows on a two-dimensional torus by means of the theorems
in §6 on flows admitting “‘good” approximations. In §12 we apply the
theorems of §4 to find bounds for the entropy of classical dynamical
systems of the general form.

Let T be a two-dimensional torus and (x, y) coordinates on 72, where

x, y are real numbers m ° ', The flows of interest to us are one-parameter
groups of shifts {St} ag trajectories of the system of differential
equations

dx dy

_JZ: A (I, y)? _dt_ == B(l', y) (11-1)

with invariant meast - of the form du = F(x, y)dx dy. We assume that the
vector field (11.1) has no singular points, that is, A+ B> 0, and that
the functions 4, B and F are sufficiently smooth. The topological
structure of the trajectories of the flow {S;}! depends on the number

A, (AFdedy

o = = .
Ay { BFdxdy

The case of rational o is of little interest, because we then have closed
trajectories. Kolmogorov [9] has shown that if o is irrational, the
metric properties of {S;} depend on the speed of approximation of & by
rational numbers. If & is “not too well ” approximated by rational numbers,
then {S; } has a discrete spectrum. If, on the other hand, o is “very
well ” approximated by rational numbers, then {S;} can have a continuous
spectrum (9], [26]. In both these cases, however, the spectrum of {S;}
has properties characteristic of “well approximated” <flows.

Let {U; } be a one-parameter group of unitary operators in LQ(TQ)
adjoint to the flow {S;} defined by (11.1).

THEOREM 11.1. If the right-hand sides A and B of the system of
differential equations (11.1) and the density of the invariant measure
F have continuous partial derivatives up to the fifth order and the
number o is tirrational, then

1. the spectrum of the group {U;} is simple,

2. the maximum spectral type of the group {U;} is singular,

3. the flow {S;} has no mixing,

Theorem 11.1 follows from two propositions.

THEOREM 11.2. If the conditions of Theorem 11.1 are satisfied
and the number & is such that, for any integers p and q, for some ¢ > 0
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P ¢

Pl 11.2

‘ q '> gt (11.2)

then the flow {S;} 1is ergodic and has a discrete spectrum.
THEOREM 11.3. If the conditions of Theorem 11.1 are satisfied

, , . . P
and there exists a sequence of irreducible fractwns-a2 such that
n

=) (11.3)

then the flow{S;} adnmits a cyclic a.p.t. with speed o(n~?).

For if o satisfies the conditions of Theorem 11.2, it is sufficient
to use the fact that the assertions of Theorem 11.1 are satisfied for
ergodic flows with a discrete spectrum.

If, on the other hand, ¢ satisfies the conditions of Theorem 11.3,
then Theorem 11.1 follows from Theorems 6.3, 6.5 and 6. 2.

It is not difficult to show that {S;} is isomorphic to a special
flow constructed with respect to an automorphism T¢4) and function f(x)
having five continuous derivatives (a special flow is defined in the
ma + n
pa + g
and therefore o and B both satisfy or do not satisfy (11.2).

Theorem 11.2 for a special flow is proved similarly to Theorem 2 in
Kolmogorov' s paper [9].

Let us describe in brief the construction of a cyclic a.p.t. with
speed o(n~% for a special flow {Rt}' constructed with respect to the
automorphism T(ﬁ), where (3 satisfies (11.3), and with f(x) having five
continuous derivatives. The flow {Rt} operates on the domain

survey paper [161). We have JB = , Where m, n, p and q are integers

K::{.T, y: O\<x<11 O<!/<f(x)}'
Let
1

v=\7@dz ana [p— I

an
U

We choose numbers 8, » 0 such that the numbers ¢,Y5; = 0, are integral.
1 1

__qil_

In addition, we require that &, > max (rEl gnt ) and &, < %—min f(x). We

fix n and take for definiteness 3 > %%—. We denote the rectangle

{(x, »: 0 ¢ x ¢ %n —{qgnBl, 0 ¢ y < 6p1 by A,. It turns out that, for
sufficiently large n, the sets Rps,A,, where k=0, 1, ..., Q, — 2, are

mutually disjoint and the measures W(R(Qn-1)sndn NAn) and U(RQ,sn4nlMp)
are sufficiently small. The decomposition &, can be constructed as
follows: we take the sets Rpspd, for k=0, 1, ..., Qp — 2 and
R(Qn-1)5m4$\An and add to each of these sets part of the set

Qn—1
K. U Bps,A4n in order to obtain on Q, a decomposition of sets of equal
R=0
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measure @17 . We can take for T, any automorphism that transforms an

element containing A, into an element containing Rs,A,, this in turn
being transformed into an element containing R23nAn and so on, until
finally an element containing R(Qn-i)snAn\\An is transformed into an
element containing A,.
The condition &, » € follows from the fact that max diam (Res A ) 0
0<k¢Qn~2 nfin) =

as n-» . A complete proof of Theorem 11,1 is given in [7].

§12, Entropy of classical dynamical systems

An upper bound of the entropy of a classical dynamical system was
first obtained by Kushnirenko [10] who proved, in particular, that this
entropy is always finite.

Very recently, by means of the method of approximations, Kushnirenko's
estimate has been improved upon. The estimates below, in contrast to
Kushnirenko’s estimate, depend on the properties of a dynamical system
on a set of full measure and not at all points.

Let M® be an m-dimensional Riemannian manifold and T be a twice
continuously differentiable homeomorphism of M® onto itself. We assume
that T preserves the normalized measure { which is absolutely continuous
with respect to the measure 0 induced by the Riemannian metric. Let
w € M, w € R} be the tangent vector to M at w, and (dT),the differential
of the mapping T at w.

THEOREM 12.1. If the automorphism T satisfies the above
assumptions and is ergodic, the entropy of T is given by

h(T)< H=max (5 Slg”(dT)deu, n S Ig (|27 || dpt) -

Mm Mm

The proof of Theorem 12.1 is based on the construction of an a.p.t.
of the automorphism T x T(%) with a specially chosen o with speed
2H
lg

T+ 0 (ﬁ?) and on an application of Theorem 4.3.

In the general case we assume a decomposition n of M® into ergodic
components of the automorphism T, G, € 7.
THEOREM 12.2. The following inequalities hold:

i (T) < max (m»esssup g ]g”(dT)de(p/Cn)) ,
n ¢
n
m-ess s#p( S Ig || (dT'l)de(p/Cn)) .
¢
n

COROLLARY 12.1. Let Ay, ..., A, be characteristic exponents

(13) of the automorphism T. If T is ergodic, then h(T) ¢ % max | lg Ayl .

COROLLARY 12.2. If for almost all w € M we have
Il (dT")w”:zl"'an(m, where ap(w) » 0 as |n| > ©, then h(T)= 0.
Received by the Editors, November 14, 1966.
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