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Abstract. We study invariant measures with non—vanishing Lyapunov characterictic ex-
ponents for commuting diffeomorphisms of compact manifolds. In particular we show that
for k = 2,3 no faithful £% real-analytic action on a k-dimensional manifold preserves a
hyperbolic measure. In the smooth case similar statements hold for actions faithful on
the support of the measure. Generalizations to higher dimension are proved under certain
non-degeneracy conditions for the Lyapunov exponents.

0.Introduction. The purpose of this paper is to provide a partial rigorous justi-
fication to the observation that there is not too much room for many commuting
diffeornorphisms to act on a compact differentiable manifold. To be slightly more
specific, one expects that on such a manifold a “sufficiently large” action of the
group Z* may exist only if the rank k of the group is not too big compared to
the dimension m of the manifold. Naturally, one needs to define a proper notion
(or, rather several different notions) of “sufficiently large”. Any of the natural def-
initions which we discuss in this paper would show that the best inequality to be

expected is
E<m-—1. (0.1)

(See Corollary 1.4 below). Our ideas of “sufficiently large” revolve around various
versions of the notion of hyperbolicity. The strongest notion of hyperbolicity is
that of Anosov actions [PS], [KS1]. Anosov actions of both Z* and R* display a
remarkable array of rigidity properties [KL1|, [K51], [KS2], [K53]. In the present
paper we consider a much weaker and more flexible notions of hyperbolicity in a non—
uniform and asymptotic sense which involves consideration of invariant measures
of the action. It is sufficient to consider only ergodic invariant measures. Such a
measure is called hyperbolic if some element of the action has non-zero Lyapunov
characteristic exponents and strongly hyperbolic if in addition no non—zero element
has all Lyapunov characteristic exponents equal to zero. Our first observation which
involves a rather simple application of Pesin theory is that the latter notion is
strong enough to guarantee inequality (0.1) for any non-atomic measure (Corollary
1.4). Inequality (0.1) is sharp as can be seen from standard examples of actions by
hyperholic automorphisms of tori and their modifications.

The main point of the present paper is to show that in dimension two and three
the same is true for any hyperbolic measure unless the action is essentially non—
faithful, i.e. contains an element which fixes every point in the support of the
measure, {Corollaries 3.1, 3.2, Theorem 4.1 and Corollary 4.3). In dimension two
there are further restrictions which are particularly strong for analytic actions.
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Namely, any faithful action consists of maps with zero topological entropy (Corollary
3.3) and in the area—preserving case existence of a single hyperbolic periodic point
for a faithful action implies that essentially the action is completely intergable or
embeds into a smooth flow, i.e. an action of R (Theorem 3.4). In the higher
dimension {0.1) still holds for invariant measures which are sufficiently close to
strongly hyperbolic (Theorem 4.4).

Two principal ingredients used in the proofs are the structural theory of non—
uniformly hyperbolic systems {Pesin theory) [P], [KM] and the classical theory of
local normal forms [S], [C], [B], [BK]. When possible we use [KH] and its supplement
[KM] as standard references rather than quoting original sources.

1.Preliminaries.

1.1. Local Z* actions and locally maximal sets. Let M be a differentiable
manifold, I € M an open set and A C UV a compact subset. Let fy, ... fro : 07— M
be commuting diffeomorphic embeddings of class €' for some € > 0 preserving the
set A. Obviously, the maps fi,..., fi restricted to the set A penerate an action of
the group £* an A. Qutside A the action of the whole group £* may not be defined.
We will call this situation a local £* action near A. Our standard notation for a
local action will be F so that for n = (ny,...,n:) € Z* one has Finy,...,n) =
fito---o f*. The set A is called a locally mazimal sef for the local action F' if for
gome open set ¥V 2 A the set A is the biggest invariant set contained in V, i.e,

A= [ Fm)V.
neg

Any such set V will be called a separating neighborhood for A. The C'** differentia-
bility assumption is needed for applicability of Pesin theory (see proof of Proposition
1.3 and Section 1.5 below).

1.2. Lyapunov exponents and hyperbolic measures. Let F be a local Z*
action near a compact set A and g be a Borel probability F-invariant ergodic mea-
sure such that supp p C A. The Multiplicative Ergodic Theorem for Z* actions [H),
[K] allows us to define the Lyapunov characteristic ezponents (of F' with respect
to u) as linear functionals ¥i,...,x; on B* and for p-a.e. point p € A the (fine)
Lyapunov decomposition of the tangent space T,M = E, (p) & --- & E,, (p) such
that for ¢ = 1,...,! and for any v € E,, (p) one has

lim log | DF(n)p(v)ll — xi(n)

n—o0 [l

=1{.

Dimension of the space E,, (p) is called the mulfiplicity of the exponent x;.

Remarks. 1.For any n € ZF the values x;(n),i = 1,...,l are equal to the Lyapunov
characteristic exponents of the map F(n) in the usual sense [KM, Section 52].
Naturally, for a particular n the values of x;(n) may coincide for some i so the map
F(n) may have fewer than [ distinct exponents with higher multiplicities. However,
for “most” values of n this does not happen.

2.0ne should think of the group Z* as embedded into R* as the standard integer
lattice. The values y;(t) for t € R* \ Z*¥ do not make sense in the context of
the action F. However they are easily interpreted as the Lyapunov characteristic
exponents of the elements of the suspension action. [KS, Section 2.2].



HYPERBOLIC MEASURES AND COMMUTING MAFPS 399

The hyperplane ker y C R*, where y is a non-zero Lyapunov exponent, is called
a Lyapunov hyperplane. The subspace x~!(—c0,0) (corr x~1(0,00)) is called a
negative (corr. positive) Lyapunov half-space. A Lyapunov hyperplane L is called
rational if L N Z* is a lattice in L, totally irrational if L N Z* = {0}, and partially
irrational otherwise. For k=2 we will call Lyapunov hyperplanes Lyapunov lines.
Naturally , every Lyapunov line is either rational or totally irrational; in the latter
case we will call it simply irrational.

Definition 1.1. An invariant ergodic measure pu for a local Z* action F is called
partially hyperbolic if there is at least one non-zero Lyapunov exponent and hyper-
bolic if all Lyapunov exponents are different from zero.

An element n € Z* is called regular is it does not belong to any of the Lyapuinov
hyperlpanes. A regular element with respect to a hyperbolic measure is called
hyperbolic. A Weyl chamber is a connected component of the complement to the
union of all Lyapunov hyperplanes,

Each Weyl chamber is an open convex polyheadral cone in R*. Inside a Weyl
chamber each non-zero Lyapunov exponent has a constant sign. Conversely, the
locus of points in R* for which each non-zero Lyapunov exponent has a particular
sign is either empty or is a Weyl chamber. Thus any Weyl chamber can be char-
acterized as a minimal non-empty intersection of positive and negative Lyapunov
half-spaces.

1.3. Strongly hyperbolic measurs. In the case of multiple exponents it is
convenient to count each exponent the number of times equal to its multiplicity so
that there are always m = dim M exponents. Since this will not cause any confusion
from now on we will denote exponents listed this way by ¥1,..., ¥m- This allows us
to define the Lyapunov map ¥, : R* = R™ by ¥ = (x1,...,Xm). The Lyapunov
map is defined up to a permutation of coordinates.

Thus the measure g is hyperbolic if and only if Im ¥, does not lie in any coor-
dinate hyperplane. We will call dim Ker ¥, the defect of 4 and denote it by d(u).
Equivalently, d(p) is equal to the dimension of the intersection of all Lyapunov
hyperplanes. Furthermore, dimIm ¥, is called the rank of p and is denoted by
r{u). Equivalently, r(g) is equal to the maximal number of linearly independent
Lyapunov exponents.

Definition 1.2. A hyperbolic measure is called strongly hyperbolic if the intersec-
tion of all Lyapunov hyperplanes consists of the origin.

Obviously, d(u) + r{u) = k.

All our discussion from the beginning of Section 1.2 and up to this point was not
specific to the differentiable case. In fact, it makes sense in the more general context
of linear extensions of actions of Z* by measure—preserving transformations [K]. Now
we are coming back to the smooth situation. Since r(p) < dim M, we have

k < dim M + d(p).
In particular, for any strongly hyperbolic measure for a local Z* action on M

k < dim M. (1.1)
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Proposition 1.3. If Im ¥, intersects the positive octant BT (and hence also the
negative octant —=RT ) then the measure p is atomic.

Proof. The pre-image (¥,)"!(—R™) is the negative Weyl chamber A" where all
Lyapunov exponents take negative values. Take n € AN Z* and let f = F(n).
There is a set of full measure of points (we will call them regular) which satisfy the
assertions of Theorem S.3.1 of [KM] with respect to the map f .This set contains
a subset of large measure which consist of points which have stable and unstable
local manifolds of fixed size with respect to f. (See subsection 1.5 below for a more
detailed discussion.) Denote this set by R. Pick a point £ € R such that the f—orbit
of = returns to the intersection of R with an arbitrary small ball around z. We can
also assure that the Lyapunov characteristic exponents at x coincide with those for
the measure. By the Closing Lemma ([KM, Theorem S.4.13]) one can find regular
f-periodic points for f arbitrary close to x. Let p be such a point, of period, say,
N. The Lyapunov characteristic exponents with respect to f at p are close to those
at x, hence negative. Hence the local stable manifold W} (p) is open , and, since its
size is uniformly bounded from below, if p is chosen close enough to = , we conclude
that = € W}(p). Consequently, f*"x — p as k = oo. Since z is a recurrent point
this implies that x = p. But this argument applies as well to any regular periodic
point constructed near . Thus x is an isolated point in a set of positive measure,
so g must be an atomic measure. O

Corollary 1.4. If ju is a hyperbolic measure for a local E* action and k = dim M +
d{u), then u is atomic. In particular, any strongly hyperbolic ergodic invariant
measure for a local Z* action on a k-dimensional manifold is atomic.

Proof. Obviously r(g) = dim M so Im ¥, = R4™M 5 RimM O

Corollary 1.5. If p is a non-atomic hyperbolic measure for o local ZF action F
and r(p) = dim M — 1 then there exists a reqular element n € Z* such that F(n)
has exaclty one positive Lyapunov exponent and this exponent is simple,

Proof. Let as before dim M = m. Then the image of the map ¥, is a hyperplane
S C B™ and by Proposition 1.3 it does not contain points all of whose coordinates
are negative. Thus it is given by a single linear equation all of whose non-zero
coefficients have the same sign. Hyperbolicity implies that there are at least two
non-zero coefficients. Hence one can find an open set of points in S with one positive
coordinate and the rest negative. Among pre-images of such points there are regular
elements of Z¥. O

As was advertised in the introduction Corollary 1.4 immediately implies that
if a local Z* action on an n—dimensinal manifold possesses a strongly hyperbolic
non-atomic invariant measure then

k<m-—1.

This inequality cannot be improved. In fact, for any m > 2 there is a Z™~!
action on the m—dimensional torus T™ by hyperbolic automorphisms for which
Lebesgue measure is invariant and strongly hyperbolic See e.g.[KL1]. A “surgery”
described in [KL2] allows to produce actions of E™-1 with strongly hyperbolic
ahsolutely continuous invariant measures on certain m—dimensional manifolds ofther
than torus. The rank of these measures is equal to m — 1.
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The principal purpose of this paper is to show that in the low-dimensional cases,
namely for globally defined actions on manifolds of dimension two and three, in-
equality (0.1) holds not only for strongly hyperbolic but for non-atomic hyperbolic
invariant measures unless the action is essentially not faithful, i.e. some of its el-
ements have fixed point sets of full measure. In dimension higher than three this
assertion is true under the extra condition d{p) = 1. On the other hand, if di-
mension is high enough one can produce an effective hyperbolic (but not strongly
hyperbolic) action of Z*¥ by automorphisms of T™ such that k > m. Appropri-
ate examples which contain lots of unipotent elements were found recently first
by A.Starkov and the author in dimension > 19 and then were shown to exist by
A.Starkov in dimension 16 (unpublished).

1.4. Periodic points for commuting maps. The following general lemma about
periodic orbits which is undoubtedly well-known will be used on several occasions
later.

Let f : U = M be a €' diffeomorphic embedding , p € U be a transverse
periodic point for f , i.e f¥p = p and the derivative 113-‘_;"'1;:|hr does not have one as an
eigenvalue. Let g be another diffeomorphic embedding defined in a neighborhood
of the orbit of the point p and commuting with f.

Lemma 1.6. The sequence {g"p}, n = 0,1... has no accuwmulation points in the
domain U of the map f.
Remark. The lemma implies that one of the following possibiliteis takes place:
(i) pis a periodic point for g;

(ii) the closure of I is not compact;

(iii) only finitely many iterates of the map g are defined at p;

(iv) limit points of the sequence g"p lie on the boundary of I/ where the map f

is not defined.

The second possibility is excluded by our standing assumption that the ambient
manifold M is compact. Under a stronger assumption the last two possibilities can
also be excluded.

Corollary 1.7. If f,g are commuting C' diffeomorphisms of a compact manifold
, than any transverse f-periodic point is also g-periodic.

Proof of Lemma 1.6. Assume that all iterates of g are defined at the orbit of p
and assume that g™ p — g € [/ where all points in the sequence g™p, &k =1,...
are distinct. We have f¥(¢*p) = ¢*(f¥p) = ¢*p so that the point g*p is f-periodic
with the same period N as p. Furhtermore, taking the derivative of both sides of
the equality fV = ¢g* o f¥ 0 g~* at the point g*p we obtain

(DfN)gep = (Dg*)p o (DfN)p 0 (Dg~*)gep = (Dg*)p o (DFN)p o [(Dg*)p] .

Thus, all linear operators (D fV¥ Jgep: & =0,1... are conjugate and hence have the
same eigenvalues. Since f is a C' map and g € U, by the continuity of the derivative
of f we conclude that f¥q = q and (Df"), has the same eigenvalues as (D f™),,
so that g is a transverse and hence isolated periodic point of period NV for f, a
contradiction. O

1.5. Regular points. Suppose f : U —+ M is a C'** diffeomorphic embedding and
gt is an f-invariant measure with compact support, not necessarily ergodic but with
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non-zero characteristic exponents almost everywhere. This situation appears when
we consider a regular element for a £* action with a hyperbolic invariant measure.
Then one can find a nested family of compact sets Rg; 0 < 8 < 8y; Rg, C Ry, for
#a2 < f, where parameter # signifies “puaranteed size” of local stable and unstable
manifolds, with the following properties (see [KM]):

(1) the union of sets Ry ;0 < & < # has full measure;

(2) for each point & € Ry there are C' local stable and unstable manifolds
W;(z) = exp, Bj and W} (z) = exp, By where By and By are the balls of
radius # around the origin in the stable and unstable subspaces E—(z) and
E*(z) of the tangent space T, M correspondingly;

(3) the manifolds W§(z) and W¢(x) depend on z € Ry in a Hoelder way with
the Hoelder exponent independent of # but the constant dependent on it;

(4) each set Ry contains a dense set of periodic points; if Lyapunov characteristic
exponents of f with respect to g are constant almost everywhere one can
find such points with the Lyapunov characteristic exponents arbitrary close
to those for the measure u.

Unless an ambiguity may appear , we would usually refer to the sets By Nsupp u
as regular sets. We will denote by R™(f,n) and R*(f, ) correspondingly, the
closure of the union of global stable and unstable manifolds of all points from the
set B M supp .

Remark. The sets By may contain points outside of the support of the measure u;
for example, periodic points from (4) may not belong to supp j; this would happen,
in particular, if supp g is a minimal set for f.

2.The main theorem. In this section we establish a criterion for an action pre-
serving a hyperbolic measure to contain elements with large (in fact, full measure)
sets of fixed points. Later we will show that the conditions of that criterion are
satisfied in a variety of natural situations.

Let p be a hyperbolic fixed point of a C* map f where 1 < r < 0o and W?*(p)
be its local stable manifold. For 1 < ¢ < r we denote by S*(f, p) the group of local
C* diffeomorphisms of W#(p), fixing the point p and commuting with f. Given the
eigenvalues of DF;, , one can find ry and #y such that if r > vy and ¢ > #5 then
S f,p) is a finite-dimensional Lie group whose dimension is uniformly bounded
for all f with the given derivative at p and which for a given f does not depend
on & Thus we will denote this group by &(f,p). This can be deduced from the
theory of local normal forms [B], [BK], [C]. We will call the maximal dimension of
an abelian subgroup of S(f,p) the stable rank of f at p and denote it by R*(f,p).
For a periodic point p of period V we define R*(f, p) to be equal to R*(fV,p).

The importance of these notions to our study of Z* actions lies in the fact that
the stationary subgroup of a periodic point p of a regular element acts on the
stable manifold of that point. The stable rank determines whether the resulting
homomorhism of the stationary subgroup (which is isomorphic to Z% by Corollary
1.7) into 8*(f,p) may me a monomorphism with discrete image. In what follows
we assume that r > ry and ¢ > # for any periodic point mentioned.

Theorem 2.1. Let f be a O diffeomorphism of a compact manifold M and i be an
f-invariant ergodic measure with non-zero characteristic exponents, one positive and
the rest negative. Suppose that the stable rank of f at any periodic point described in



HYPERBOLIC MEASURES AND COMMUTING MAPS 403

Section 1.5 (4), is less than k. Then any C* action of the group Z* which includes
f also contains an element which fizes every point of the set B—(f,u) U RY(f, u).

Proof. Fix # > 0 and a point = € Ry M supp p.

Step 1. First, let us explain that it is enough to find an element g of the action
such that for a small enough neighborhood V' 3 z the local stable and unstable
manifolds of all periodic points from the intersection V' N Ky are fixed points of
the map g. The set of fixed points of any map commuting with f is closed and
f-invariant. Thus, by the density of periodic points in Fg and the continuity of the
stable and unstable manifolds on Ry the above statement will imply that g fixes
every point of ¥V N Ry as well as of their local stable and unstable manifolds. Since
w(V N Ry) >0 and f is ergodic with respect to p this implies that the fixed-point
set of g contains supp p as well as open pieces of stable and unstable manifold of an
almost every point in K. But every closed invariant set which contains such pieces
has to contain R=(f, u) U RY(f, u).

Step 2. Pick a periodic point p € Hs very close to z. Let N be the minimal
positive period of p. Lyapunov characteristic exponents at p are close to those for the
measure g, hence p is a hyperbolic fixed point for fV with one eigenvalue of absolute
value greater than one and the rest less than one; in other words, the local unstable
manifold W*(p) of p with respect to f is one-dimensional and the stable manifold
has codimension one. By the continuity of the stable and unstable manifolds on
the set Ry the same is true for any nearby point € Hp. The local stable manifold
W#(p) of the point p intersects transversally at a single point the local unstable
manifold of any point y € ¥V N Ry; similarly, the local unstable manifold W (p) of p
intersects transversally at a single point the local stable manifold of any such point
y. Let us denote these intersection points [p; y] and [y; p] correspondingly.

By Corollary 1.7 the point p is periodic for our ZF action. Thus its stationary
subgroup G, has finite index in Z* and hence is itself isomorphic to Z¥. All elements
of the stationary subgroup preserve the stable manifold W*(p) and thus we obtain
a representation R : G, — §'(f, p) whose image must lie in an abelian subgroup of
St(f,p). By the rank assumption one of the following possibilities hold:

(1) R is not discrete;

(2) the image of of T has a non-trivial kernel.

We will show by contradiction that the former possibility is not possible,

Assume (1), pick another periodic point ¢ € R very close to p and consider
the intersection of the stationary subgroups of p and g. This is still a finite index
subgroup of Z*, hence its image is not discrete either. Pick g € G,NG, such that its
image is C? close to identity. In particular, both points g([p; ¢]) and g~ ([p; g]) still
belong to the local stable manilold W#(p). But the uniqueness of the intersection of
local stable and unstable manifolds implies that none of these points belong to the
local unstable manifold W*(q). This is a contradiction. For, consider the segment
of W*(q) between g and [p;g]. Either the map g or its inverse map this segment
into itself o that one of the two points must belong to the local unstable manifold
W*(q).

Step 3. Thus we can assume (2). Let g € KerR. Now again pick a periodic
point g € Ry. In order to show that the map g fixes every point on the local
stable manifold W#*(g) we use the Inclination lemma [KH, Proposition 6.2.23]. It
implies that W#(q) belongs to the closure of the f-orbit of W*(p) and hence to
the set of fixed points of the map g. In particular, g fixes the point [g;p]. But by
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the Poicaré Linearization Theorem the map f which is an expansion on the one-
dimensional manifold W*(p) can be linearized on W*(p) simultaneously with any
C' map commuting with it (See e.g.[KH; Sections 2.1 and 6.6]) ; since g is such
a map and it preserves two points p and [g; p], it must be the identity on W*(p).
Applying the Inclination lemma again we deduce that it also fixes every point on
W*(q).

By the reduction explained in the Step 1 this finishes the proof of the theorem. O

Remark. The only place we used the fact that the action is defined globally rather
than in a neighborhood of an invariant compact set was in our use of Corollary 1.7
to infer that f-periodic points are actually periodic for the whole action. This point
looks rather technical and we believe that the statement of the theorem holds for
local actions as well,

Since the set of fixed points of g contains a subset diffeomorphic to the product
of a codimension one dise and an infinite set, if we assume that our action is real—
analytic the conclusion is that g is the identity map.

Corollary 2.2. Let f be a real-analytic diffeomorphism of a compact manifold M
and p be an f-invariant ergodic measure with non-zero characteristic exponents,
one positive and the rest negative. Suppose that the stable rank of f at all periodic
points deseribed in Section 1.5 ({) is less than k. Then any real-analytic action of
the group Z* which includes f is not faithful.

3. The two—dimensional case.

3.1. Z? actions are not faithful. In dimension two both stable and unstable
manifolds for any hyperbolic periodic point are one-dimensional unless the point is
either contracting or expanding. The latter possibilities do not appear for periodic
orbits accompanying non-atomic hyperbolic invariant measures due to Proposition
1.3. We already used Poincaré Linearization for an expanding (or contracting) map
on the line near its fixed point. This classical fact, namely, existence and unigeness
of a €' linearization, immediately implies that the group of €' local diffeomor-
phisms of W*(p) commuting with f is one-dimemsional, i.e using the language of
the previous section for r > 1 one can take ry = 1 and the stable rank of f at the
point p is equal to one. Thus, Theorem 2.1 immedialety implies

Corollary 3.1. Let f be a C'*¢, (e > 0) diffeomorphism of a compact two-dimensional
manifold M, p an f-invariant ergodic measure with non-zero characteristic expo-
nents and g be a C' diffeomorphism of M commuting with f. Then there ez
ist mon-zero integers k and | such that the map f*g' fixes every point of the set
R™(f,m) UR*(f,p).

Since the set R, for a non-atomic hyperbolic measure p contains a set diffeomor-
phic to the product of an interval with an infinite set we immediately obtain

Corollary 3.2. Any real-analytic action of Z* on a compact two-dimensional man-
ifold which preserves a hyperbolic measure is not foithful.

By the Variational Principle [KH, Theorem 4.5.3] and Ruelle inequality [KM, Theorem
5.2.13] the topological entropy of a diffeomorphism of a compact two—dimensional
manifold is equal to the supremum of entropies with respect to ergodic invariant
measures with non-zero characteristic exponents. Any non-regular element in our
situation has to have zero exonents. Thus we obtain
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Corollary 3.3. Any element of a faithful real-analytic action of Z® on a comipact
two—dimensional manifold has zero topological entropy.

3.2. Area-preserving analytic actions. Combining Corollaries 3.2 and 3.3 we
conclude that a faithful real-analytic action of Z on a compact two-dimensional
manifold may have only two types of invariant measures: non-hyperbolic {one ex-
ponent is identically equal to zero) and atomic hyperbolic. We can develop this
theme further by asking how such measures may coexist. Not much can be said for
an arbitrary non-hyperbolic measure but if we assume that it is smooth, i.e is given
by a nice density, a surprisingly strong conlusion can be drawn in the real-analytic
case. So we assume that F is a real-analytic area—preserving action of Z* on a
compact surface which possesses a hyperbolic periodic point p. Passing to the sta-
tionary subgroup of the point p which is in itself isomorphic to Z? we can assume
that p is a fixed point. We start from the description of the local real-analytic
centralizer of a real-analytic area—preserving diffeomorphism f in a neighborhood
of a hyperbolic fixed point p. This can be summarized as follows: there exists a
real-analytic local coordinate system (z;, z2) near the point p with p as the origin
such that f as well as any area-preserving real-analytic diffeomorphism g fixing the
point p and commuting with f have the following form:

glx1,22) = (z1w(z122), T2 (w(z172)) 1),

where w(t) = Y07 wany1t™ is a converging power series [M]. This implies in
particular that g preseves each hyperbola H, defined by the equation r;r: = c.
Furthermore, if wy > 0 than each branch of the hyperbola H. is invariant and
the map g allows the following convenient geometric description. From now on
we will slightly abuse our notation and will use the same word “hyperbola” and
the same notation for a branch. Introduce hyperbolic coordinates (p,#) where
E'ﬁi = peoshf, L1552 = psinhd. In these coordinates

9(p,0) = (p,8 + 7(p)) (3.1)

where 7(t) ia another converging power series with the constant term logwg. Thus,the
map g resrtricted to a branch of the hyperbola H, is a hyperbolic rotation by the
angle 7(p). If v(p) = const, the map g is linear and is itself called a hyperbolic
rotation; otherwise we will call g a hyperbolic tusst. The function + will be called
the twist function (even in the case when it is a constant).

Now consider our Z? action F in a neighborhood of the fixed point p. By passing
if necessary to a subgroup of index two we can assume that the element F(m,n) has
the form (3.1) with the twist function T, 5. The group property implies additivity
of the twist functions:

Ty +mg,nitng = Tmyng T Tmang

Thus, on each hyperbola H, our action induces a local group of hyperbolic rotations,
For a given p here are two possibilities:
(i) Tm,n(p) = 0 for some (m,n) # (0,0); in this case we will call H, a rational

hyperbola;
(ii) F acts on H, with dense orbits; then H, is called an irrational hyperbola;
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If the twist functions for different (m,n) € Z? are all proportional then all hyper-
boli H, are either simultaneously rational or simultaneously irrational. We will call
the two cases the rational resonance and the irrational resonance correspondingly.
Otherwise the ratio :;%E:; iz not constant and hence it takes rational values for a
dense set of p's. We will call this situation the non-resonance case.

Now we can formulate our structural result:

Theorem 3.4. Let F' be a real-analytic area-preserving action of 2 on a compaet
two—dimensional manifold and p be a hyperbolic fired point for F such that the
eigenvalues of DF(m,n), are positive, Then one of the following possibilities hold:

(1) the action is not faithful (the rational resonance case);

(2) there erists an open F-invariant set U7 which contains p in its closure such
that F' has an analytic first intergral on U de. U splits into an analytic
family of F-invariant analytic closed curves (the non-resonance case);

(3) there erists an open F-invariant set U which contains p and an analytic
non-vanishing complete vector—field v defined on the set U such that the
restriction of F' to U embeds to the one-paremeter flow generated by the
vector—field v (the irrational resonance case).

Proof. This theorem follows from several simple observations on how the local
picture described above may be fitted into a global action on a compact manifold.
At this point it is important to distinguish between pieces of hyperboli in the local
coordinates near the point p and the F—invariant immersed images of B which are
obtained by applying the elements of F to the local hyperboli and extending the
hyperbolic angle parameter along these images. To fix our notation we will continue
to denote the local curves by H, and will denote the global objects by 'y, Naturally,
T’y may have points of self-intersection; since the set of such points on each 'y, is F—
invariant if such points appear at all they would appear at the local hyperbola H,,.
We may define the first positive return map of the local hyperbola H, to a fixed
small neighborhood V' of the point p. It is defined by extending the hyperbolic
angle parameter in the positive direction by applying the elements of F which effect
hyperbolic rotations by positive angles until a parameter value is reached which
maps a point from H, back to the neighborhood V. If a point = € H, returns to V'
then the whole interval around =z also returns. Thus the set of points for which the
first positive return is defined is open and by Poincaré recurrence theorem it has
full measure. Hence it is open and dense.

Now we consider how the first positive return may appear. There are two “good”
possibilities: namely, when the image of a piece of H, under the first positive return
coincides with a piece of a local hyperbola, either H, itself, or another one. We
will examine these possibilities later and now assume that the image does not lie
on a single local hyperbola. First, a point € V' has infinite stationary subgroup
it and only if it belongs to a rational hyperbola; hence the imapges of a rational
hyperbola may intersect only rational hyperboli. But this is possible only in the
rational resonance case, In that case an open set of points has the same infinite
stationary subgroup; hence by analyticity the action is not fathful. This is the case
(1).

Now consider the first return for an irrational hyperbola. In the non-resonance
case this image must intersect rational hyperboli, which is impossible, since as we
have pointed out a point in V' has infinite stationary subgroup if and only if it
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belongs to a rational hyperbola. The only remaining possibility for a “bad” return
then would be in the irratinal resonance case. This is impossible by the following
reason: the action F restricted to an irrational hyperbola includes elements effecting
arbitrary small hyperbolic rotations. The same is true for a piece which appears as
the image of a piece of an irrational hyperbola under the first positive return. So if
this piece intersects different hyperboli, the small shift would not keep each point
at the same local hyperbola, a contradiction.

Thus, we found that the image of a piece of a hyperbola under the first positive
return map is a piece of a single hyperbola and, moreover, rational hyperboli return
only on rational ones and irrational on irrational ones. Fix p for which H, is
an irrational hyperbola and assume that it returns to the hyperbola H,.. Consider
those values (m,n) € Z* for which 7., »(p) is not too big. Using Euclid algorithm one
immediately sees that any transltation by 7, , can be effected as the composition
of small translations. This implies that the functions (m,n) = Tm «(p) are identical
for the hyperboli H, and H, . Since the twist functions are real-analytic, this means
that if the neighborhood V' is chosen small enough then in the non-resonance case
p = p'. Thus, each irrational hyperbola returns to itself and by continuity this is
true for rational hyperboli too. This proves (2). It remains to consider the irrational
resonance case. The vector-field v is defined locally in the hyperbolic coordinates
as fl.u{ﬂ}fg and it is invariant under the return map. An obvious local calculation
shows that v is analytic at the point p. The set IJ is the union of images of V' under
all elements of the action F. O

It is worth pointing out that for real-analytic actions integrable behavior may
change into a non—integrable one. For example, one can construct a real-analytic
area—preserving Z* action on the torus T? which has analytic first integral on an
open invariant set [/, so that [/ splits into a family of closed invariant curves, but
such that the boundary of U is non-differentiable and outside of U/ the action is
ergodic on an open set,

4. Dimension three and higher.
4.1. The three—dimensional case. The following result is a counterpart of
Corollary 3.1. Notice, however, stronger smoothness asumptions,

Theorem 4.1. Let f be a O™ diffeomorphism of a compact three-dimensional
manifold M, p be an f-invariant ergodic measure with non-zero characteristic ez-
ponents, g, h two commuting C™ diffeomorphisms of M commuting with f. Then
there exists (ky, ka, ks) € Z*\ (0,0,0) such that the map f* g*2h*s fires every point
of the set R~ (f, ) U R (f, ).

Proof. In dimension three any hyperbolic periodic point which is neither attract-
ing nor expanding has either one—dimensional stable manifold or one-dimensional
unstable manifold. By replacing f with f~! if necessary we may always assume that
for periodic points from Ry the latter is the case. Thus in order to apply Theorem
2.1 we need to show that for any such point p the stable rank of f at p does not
exceed two. This follows from a rather elementary normal form analysis which we
will present here in detail.

Let N be the smallest positive period of the point p. The derivative of f at the
point p has three eigenvalues: ay,ag, s such that |o] < |as| < 1 < |ag| (the first
two may coincide). By taking a power if necessary we may assume that none of the
three eigenvalues is a negative real number.
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Taking derivatives of the smallest positive powers of g and h which fix the point
p we obtain the eigenvaues 3y, 3o, 83 and 7,7, 73 correspondingly. There are two
possible situations:

(i) the derivatives of all elements of the stationary subgroup of the point p are
simultaneously diagonalizable. In this case we define three linear functionals
Lz, y,2) = log o |z+log |5 |y +log | |2, 2z, v, 2) = log e |z +log |z |y +
log |y2|z, and ls(z,y, z) = log |as|z + log |83y + log |vs|z and conclude that
they must be linearly dependent to avoid having lattice points where all three
functionals have negative values which is prohibited due to Proposition 1.3,

(ii) o3 = aa, f1 = B2, 11 = 7. In this case all three functionals Iy, {s, 13 are
proportional.

Now we consider the normal form and the centralizer of the map fV in the two—
dimensional local stable manifold W#(p). It is exactly at this point that we will
need our high differentiability assumption.

Lemma 4.2. Any mazimal abelian subgroup in the group S(f, p) of C*° local diffeo-
maophisms of W*(p) firing the point p and commuting with f is a two-dimensional
Lie group, i.e the stable rank of the map f at the point p is equal to two,

Proof of the lemma. There are the following possibilities:

Non-resonance case. Both eigenvalues aq,as are real and :ﬁ%i- is not an in-
teger. In this case there is a unique invariant affine structure in W#(p) and any
€™ diffeomorphism commuting with f and fixing p is linear and diagonalizable
simultaneously with f [S].

Resonance case. Both eigenvalues o, ey are real and different and }%&% is an

integer, say, Eg%;- = k, i.e. a1 = (oz)*. In this case there is a C™ coordinate
system (xy, z2) in W (p) with p as the origin such that f has the form

flz1,72) = (a3 + cxk, (awa,)

for some constant e. If e # 0 the C°° centralizer of this map consists of maps of the
form

G(z1,32) = (A*zy + dr}, Azz)

with A, d € R. If ¢ = 0, the centralizer is three-dimensional. Namely, it consists of
maps

G(z1,72) = (nz1 + dz, Aza)

with A, n, d € B, but any maximal abelian subgroup in it is still two—dimensional.

Figevalues with equal absolute values., This means either complex eigenvalues
or op = g, In both cases the map f on W*(p) is C°° linearizable and and its
centralizer consists of linear maps. In the forner case the centralizer is abelian and
two—dimwnsional and in the latter it consists of all linear maps, but any maximal
abelian subgroup of the centralizer is still two—dimensional. This finishes the proof
of the lemma. 0O

Now Therem 2.1 directly applies. O
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Corollary 4.3. Any real-analytic action of Z* on a compact three—dimensional
manifold which preserves a hyperbolic measure is not faithful.

4.2. Defect and rank. Attempts to extend Corollary 3.1 and Theorem 4.1 to
higher dimension face two problems:

(1) beginning from dimension four neither stable nor unstable manifold of a
hyperbolic periodic point has to be one—dimensional;

(2) the dimension of an abelian subgroup in the local centralizer of a smooth
contraction near a fixed point on an m—dimensional manifold for m > 3 may
be greater than m — 1 in certain resonance cases; for example, for m = 3 it is
equal to three if the eigenvalues have the form A, A%, A* for some 0 < A < 1.
Hence one can find a map in dimension four with a hyperbolic fixed point
which has one—dimensional unstable manifold and the stable rank at the
point equals to three.

Both problems may be avoided by putting some extra conditions on the Lyapunov
exponents of the invariant measure. For example, if one assumes that no two dif-
ferent Lyapunov exponents are proportional with a positive coefficient (multiple
exponents are allowed) then one can find a regular element with non-resonance
exponents and hence periodic points for which the local centralizer in the stable
manifold consists of linear maps. If one excludes multiple exponents this solves the
problem with the dimension of the centralizer. A stronger condition which first
appeared in Corollary 1.5 allows also to guarantee existence of elements with one-
dimensional unstable manifolds. Namely we will consider measures which are as
close as possible to strongly hyperbolic.

Theorem 4.4. Let F be a C* Z* action on a k-dimensional compact manifold
with an invariant hyperbolic non-atomic measure g such that the defect d(p) = 1.
Then there exist a regular element f = F(ng) and a non-zero element n € Z* such

that F(n) fizes every point of the set R—(f, p) URY(f, p).

Proof. Since d{u) + r(g) = k we have r{u) = k — 1 and by Corollary 1.5 there are
regular elements with one dimensional unstable manifold. In particular, fixing an
appropriate octant (@ € R* corresponding to one positive coordinate and the rest
negative and taking the pre-image of O under the Lyapunov map ¥ we find a Weyl
chamber W such that any map F(n) where n € Z*¥ N W has one positive Lyapunov
exponent and & — 1 (counting with multiplicities) negative ones. Hence any F(n)
regular points (and consequently the periodic points described in section 1.5.(4)
have one—dimensional unstable manifolds and stable manifolds of codimension one.
Let p be such a periodic point and Aj,..., Az—; be its eigenvalues of absolute value
less than one. If N is a period of p then the numbers 281l oz !ﬁ"“i are close
to the negative Lyapunov exponents of F(n). Let o; = log|M], i =1,...,k— L
The following non-resonance condition is sufficient for the stable rank of F(n) at
the pont p to be equal to k& — 1.
(NR) If my,...mg-1 are non-negative integers and

k=1
ok = ijﬂj, then M= =Mi-] =Mijt1 =...Mg_ =0.
—
For, if the non-resonance condition is satisfied the restriction of F(n) to the stable
manifold W#(p) can be € linearized and brought to a diagonal form. But any
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map £'°° map commuting with a linear diagonal contracting non-resonance map‘is
again linear and diagonal so the stable rank of the map F(n) at such a point p is
equal to k& — 1.

Now we will show that if we pick n € £* N W such that the Lyapunov charac-
teristic exponents z; = ¥i(n), i = 1,...,k — 1 satisfy the non-resonance condition
(NR) then the periodic points from 1.5, (4) can be chosen in such a way that
the non-resonance condition is satisfied for the a's. Let us consider an equation
A E;‘;: m;z; with non-negative integer coefficients my, ... mg—;. The k-1
Lyapunov exponents of F which are negative in the Weyl chamber W can not
satisfy such a relation identically. For, by our rank assumption all £ Lyapunov
exponents satisfy only one linearly independent relation and that relation can be
expressed by an equation with non-negative coefficients. The only relations of the
above form

(m; = 1)z + Y mjz; =0 (4.1)
i

which possesses this property would have to have positive coefficient m;. But no
such relation can hold at any point of W where all variables z;,..., 23~ are neg-
ative. Thus the only possible relations have m; = 0. Now consider the hyperplane
L =Im ¥, C B* and its intersection with the octant O. Any relation of the form
(4.1) with m; = 0 determines a hyperlane in B*. If at least one of the coefficients
mj, j # i is large enough then the intersection of this hyperplane with O lies in a
small neighborhood (in the projective sense) of the hyperplane z; = 0. Since for
any i € {1,...k — 1} there are only finitely many relations of the form

Iy = E m.J;I_j

i

with bounded coefficients we conclude that the complement to the intersection of
¥, (W) = LN O to the union of all planes of the form {(4.1) is open and dense in
Im W; hence its pre-image which is open and dense in ¥, (W) contains points of
the lattice Z*, Picking any such lattice point n we can guarantee that the periodic
points from Section 1.5.(4) can be chosen to satisfy the non-resonance condition. O

5.Remarks on continuous time actions. All results of this paper have natural
counterparts for continmous time systems, i.e. for actions of Rk, Naturally the
dimension of the phase space has to be increased by the dimension of the group,
i.e. by k. It is natural to consider measures supported on the set where the action
is locally free. Accordingly, in the definitions of hyperbolic, strongly hyperbolic etc
measure one should allow for k zero exponents corresponding to the orbit direction.
The role of atomic measures is played by measures concentrated on compact orbits,

Thus, the following facts hold: any strongly hyperbolic measure for an R* action
on a 2k-dimensional manifold is atomic; the group B? acting on a three—dimensional
manifold cannot have any hyperbolic measures, not concentrated on compact orbits;
any C'+¢ action of R? on a four—dimensional manifold or a C* action of R* on a
six—dimensional manifold with a non-atomic hyperbolic measure contains a one-
parameter subgroup which fixes every point in the support of the measure as well
as on the stable and unstable manifolds of the regular points from the support.
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The proofs of these facts are obtained by translating essentially verbatim our
proofs in the discrete time case using proper versions of results from Pesin theory and
from local normal forms theory. All examples and counterexamples are extended to
the continuous time situation via suspension construction.
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