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• KAM method in rigidity (D.Damjanovich(Ph.D ’04-PSU)–AK).

• Measure rigidity. Main problems and description of

methods.(AK–R.Spatzier(Ph.D-’83-Warwick/Maryland);

B.Kalinin(Ph.D-’00-PSU)–AK;

M.Einsiedler(Post-Doc-01/02)–AK).

• Application to Littlewood conjecture

(M.Einsiedler–E.Lindenstrauss–AK).



Connections with Moscow school and MGU

My MGU years 1960-68 (undergraduate-graduate); 1968-73

(part-time).

Both of my topics go back to Kolmogorov’s fundamental

contributions to modern analysis: KAM and entropy. Another root

of 2-3: conditional measures (Rokhlin, Sinai)

Kolmolgorov was my mathematical “grandfather” through Sinai

(and Ph. D. referee:”official opponent”) My Ph. D. was connected

with Kolmogorov’s problems but to neither of the two topics.

I learned KAM from Arnol’d’s lectures and articles (general

outlines) and from Moser’s aricles (techniques) especially from his

Pisa lectures which I translated for Uspehi (1968).

I learned entropy and conditional measures from Sinai.



DIFFERENTIABLE GROUP ACTIONS.

Preliminaries

• M – differentiable manifold (usually compact).

• G – Lie group (usually connected or discrete).

• Diffr(M) – the group of Cr diffeomorphisms of M ;

r = 0, 1, 2, . . . ;∞, ω.

• A continuous homomorphism α : G→ Diffr(M) is called a

Cr–action of G on M .

We give general definitions but we will discuss in the talk only the

actions of abelian groups: Z
k and R

k. Our substantive results deal

with the higher rank case (k ≥ 2; commuting maps and

vector–fields); the classical cases of Z actions (iterates of a single

map) and R actions (flows generated by ODE) will appear mostly

for comparison and contrast.



Cr–conjugacy, orbit equivalence, time change

• G-actions α and β are Cr–conjugate if

α = h ◦ β ◦ h−1 for some h ∈ Diffr(M).

• G-actions α and β are Cr–conjugate up to an automorphism if

α ◦ ρ = h ◦ β ◦ h−1 for some h ∈ Diffr(M) and an

automorphism ρ of G.

• For G continuous let Oα be the orbit foliation of α.

• α and β are Cr–orbit equivalent if Oα = hOβ for some

h ∈ Diffr(M).

• β is a time change of α if Oα = Oβ .

• Actions are orbit equivalent iff one is conjugate to a time

change of the other.

• Time change is determined by a certain G–valued 1–cocycle

over the action.



Rigidity

Let 0 ≤ k ≤ m ≤ r. (Assume ω >∞ > n for any natural n.)

• For discrete G a Cr action α of G is Cm k–rigid if any Cr

action β sufficiently close to α in Cm topology is Ck conjugate

to α.

• For continuous G a Cr action α of G is Cm k–rigid if any Cr

action β sufficiently close to α in Cm topology is Ck conjugate

to α up to an automorphism.

• Cm k–orbit rigidity defined similarly with Ck orbit equivalence

instead of conjugacy.

• Cm 0–orbit rigidity is called Cm structural stability.

Usually it is also assumed that the conjugacy or orbit equivalence is

Ck close to identity.



The classical cases: G = Z, R

• C1 structural stability completely characterized;

closely connected with (uniform) hyperbolicity.

• In the structurally stable continuous time case there are

infinitely many moduli of C0 (topological) conjugacy; closely

related to lengths of periodic orbits.

• Existence of Cm (but not C1) structural stability for m > 1 is

unknown; it is unlikely, but the proof is currently beyond reach

due to the lack of understanding of

global Cm perturbation constructions for m ≥ 2.

• Cm 1–rigidity or orbit rigidity is impossible due to the

good understanding of local C1 perturbations.

• Cm k–rigidity or orbit rigidity is highly unlikely and can be

ruled out in many cases (e.g. on any surface other than torus).



An example: Structural stability of a hyperbolic

toral automorphism

Such map FA on the torus T
N is given by an integer N ×N matrix

A, detA = ±1. Assume A has no eigenvalues of absolute value 1

then FA is C1 structurally stable. Namely, if g is a C1-small

perturbation of FA then there exists a homeomorphism H of the

torus such that:

g ◦H = H ◦ FA (1)

It is enough to find a continious bounded 1-periodic map h on R
N

such that:

h ◦A− A ◦ h = g̃ ◦ (id+ h) (2)

where A and A+ g̃ are lifts of FA and g to R
N . Let

L(h)
def
= h ◦ A−A ◦ h, and N (h)

def
= g̃ ◦ (id+ h). (3)

Clearly ‖N (h) −N (h′)‖ ≤ ‖Dg̃‖‖h− h′‖, thus if L−1 is a bounded



linear operator on the space B of continuous N-periodic maps than

‖Dg̃‖ being sufficiently small assures that the operator L−1N is a

contraction on the Banach space B. Thus it has a unique fixed

point h which by (2) gives a continuous surjective map H = id+ h

satisfying (1). The operator L has bounded inverse due to

hyperbolicity. Assuming Ais diagonalizable take an eigen-basis: the

equation (3) splits: Li(hi)
def
= hi ◦A− λihi where λi are eigenvalues

of A and hi coordinate functions of h. Each of these equations can

be inverted as:

L−1
i (hi) = −

∞
∑

n=0

λ
−(n+1)
i hi ◦A

n for |λi| > 1

L−1
i (hi) =

∞
∑

n=0

λn
i hi ◦A

−(n+1) for |λi| < 1

and the resulting operator is clearly bounded on the space B;H is

injective since A is expansive. Thus H conjugates g and FA.



The higher rank case

The differentiable orbit structure of smooth actions of Z
k and R

k

for k > 1, is remarkably different from the classical cases k = 1.

While differentiable rigidity as well as local classification by finitely

many moduli is most likely impossible in the classical cases, these

phenomena appear in the higher–rank case.

This was shown in the nineties for most standard hyperbolic

actions, such as actions by hyperbolic automorphisms of the torus,

Weyl Chamber flows and other hyperbolic homogeneous actions in

a series of papers by R. Spatzier, M. Guysinsky and the speaker.

The methods there combine classical hyperbolic fixed point

techniques (Hirsch–Pugh–Shub theory) to establish structiral

stability, with the theory of nonstationary normal forms and

cocycle (parameter) rigidity to show transversal regularity and

rigidity of time changes correspondingly.



A new progress has been achieved recently with the introduction of

a KAM type iteration method where the cocycle rigidity serves as

an inductive step to invert the linearized equation. These scheme

has been carried out jointly with my Ph.D. student Danijela

Damjanovic in the case of commuting PARTIALLY HYPERBOLIC

automorphisms of the torus.

Notice that individual element ARE NOT STRUCTURALLY

STABLE here so the method based on a priori estimates is not

sufficient.

The work on the semisimple case is in progress.



In the earlier version a mixed method was used.

• First C0 stability of the neutral foliation was established using

Hirsch–Pugh–Shub theory.

• Then regularity of the conjugacy transversally to the neutral

direction was proved by the nonstationary normal forms

method.

• And finally KAM scheme was applied to perturbations in the

neutral direction only ;

• Cocycle rigidity is used to solve the linearized equation for an

iterative step.



In the definitive version

Danijela Damjanovic and Anatole Katok. Local Rigidity of

Partially Hyperbolic Actions on the Torus,

http://www.math.psu.edu/katok a/papers.html

KAM method completely takes over; this is Damjanovich’s original

contribution. The proof for hyperbolic and partially hyperbolic

cases is unified. In particular, non-trivial Jordan blocks previously

excluded in the hyperbolic case are covered now.



KAM METHOD

• M – compact smooth manifold;

• g : M →M – a “model” (linear, algebraic, homogeneous, etc);

Assume linear structure in a space of diffeomorphisms near g and

near Id;

• f = g + u – a “perturbation” (nonlinear, general).

Want to show that f is (smoothly) conjugate to g via unknown

h = Id+w.

• Conjugacy equation as an implicit-function problem:

g = F(f, h) := h−1 ◦ f ◦ h. (4)

• The “group property”:

F(f, ϕ ◦ ψ) = F(F(f, ϕ), ψ), F(f, Id) = f. (5)



Linearized equation.

• D1F and D2F partial differentials with respect to f .

• First order Taylor expansion of (4) at (g, Id):

F(f, h) = F(g, Id) +D1F(g, Id)(u) +D2F(g, Id)(w) + R(f, h);

R(f, h) is of second order in (u,w).

• If h solves the linearized equation (obtained by dropping R), then

F(g, Id) +D1F(g, Id)(f − g) +D2F(g, Id)w = g. (6)

Since F(·, Id) = Id(·) by (5), D1F(g, Id) = Id, and

u+D2F(g, Id)w = 0. (7)

• If D2F(g, Id) is invertible, then w = − (D2F(g, Id))
−1
u.



Quadratic convergence

• In the case of invertibility, w is of the same order as u, and

substituting h = Id +w into F(f, h) we obtain a function

f1 = h−1 ◦ f ◦ h = F(f, h) = g + R(f, h), so the size of

u1 = f1 − g = R(f, h) is formally of second order in the size of

u = f − g.

• Iterative process. Assuming that f1, . . . , fn have been

constructed, solve the equation

fn − g +D2F(g, Id)wn+1 = 0

and set

hn+1 = hn ◦ (Id+wn+1) and fn+1 = (Id+wn+1)
−1 ◦ fn ◦ (Id +wn).

• To justify the iterative process and prove convergence, one needs

to estimate the difference between F and its linearization near

(g, Id).



Intrinsic subtlety of the conjugacy problem

Notice that at every step the linear part is inverted at (g, Id),

rather than at the intermediate points as in the elementary Newton

method. This is the main reason which makes analytic difficulties

manageable (however often still quite formidable):

• There are usually obstructions to solvability of the linearized

equation: the operator D2F(g, Id) is only invertible at the

kernel of these obstructions which may have finite or infinite

codimension.

• Even at the kernel there is usually no bounded inverse in any

natural class of regularity (Cr, Sobolev, analytic in a fixed

domain).



Recall the notions of rigidity (and slightly change notations for

convenience)

An action α of a finitely generated group A on manifold M is Ck,r,l

locally rigid if any sufficiently Cr-small Ck perturbation α̃ is Cl

conjugate to α, i.e there exists a Cl diffeomorphism H of M which

conjugates α̃ to α: H ◦ α(g) = α̃(g) ◦ H for all g ∈ A. C∞,1,∞ is

usually refered to as C∞-local rigidity.

Theorem 1 Let α : Z
d × T

N → T
N be a C∞ partially hyperbolic

action of Z
d (d ≥ 2) by toral automorphisms. Let

α̃ : Z
d × T

N → T
N be a Cl-small C∞ perturbation of α. Assume

that the action α has no non-trivial rank-one factors.

Then there exists a C∞ map H : T
N → T

N such that

α ◦H = H ◦ α̃, i.e α is C∞,l,∞ locally rigid.

Here l depends on the dimension of the torus and the linear action.



The scheme of proof:

α - linear action

α̃ - perturbation

Let R = α̃− α be ”small” (‖(R)‖C0 ≤ ε, ‖(R)‖Cl ≤ ε−1, ε small)

The goal is to show the existence of H : T
N → T

N such that

α̃ ◦H = H ◦ α, H = id + ∆ where ∆ should be ”small” as well.

In terms of ∆ we need

α∆ − ∆ ◦ α = −R ◦ (id + ∆)

If ∆ is a solution for the corresponding linearized equation

α∆ − ∆ ◦ α = −R

then

α̃(1) def
= H−1 ◦ α̃ ◦H



should be ”quadratically” close to α i.e.

R(1) def
= α̃(1) − α

should be ”quadratically small” with respect to R.

It is easy to see that the new error is is:

R(1) = α̃(1) − α =
[

∆ ◦ α̃(1) − ∆ ◦ α+ R(id + ∆) −R
]

+

[

R− [α ◦ ∆ − ∆ ◦ α]
]

.

The part of the error in the first parentheses is easy to estimate

providing ∆ is ”small”

Therefore, it is enough to solve the linearized equation

approximately (i.e. - with an error ”quadratically small” w.r.t. R)

in order to run the KAM iteration scheme and produce a solution

in the limit.



It is enough to produce a conjugacy H for two generators. The

same conjugacy will work (due to commutativity and ergodicity

assumptions) for all other elements of the action.

Therefore, solving the linearized equation

α∆ − ∆ ◦ α = −R

reduces to

A∆ − ∆ ◦A = −RA, B∆ − ∆ ◦B = −RB (8)

where A
def
= α(g1), B

def
= α(g2) are two N ×N matrices with no

roots of of unity in the spectrum.



It is possible to solve the linearized equation (8) providing

L(RA,RB)
def
= (RA ◦B −BRB) − (RB ◦A− ARB) = 0

with fixed loss of the regularity in C∞ case

Even if RA and RB do not satisfy the solvability condition above,

it is still possible to approximate both by maps which satisfy the

solvability condition with error bounded by the size of L(RA,RB).

Again with fixed loss of regularity in the C∞ case.

We show that if α̃ = α+ R is a commutative action then

L(RA,RB) is ”quadratically small” w.r.t RA, RB.

From these we get approximate solution to the linearized

equation (8).



Existence of non-trivial examples

Theorem 2 Genuinely partially hyperbolic (i.e ergodic, not

hyperbolic) Z
2 actions by toral automorphisms exist: on any torus

of even dimension N ≥ 6 there are irreducible examples while on

any torus of odd dimension N ≥ 9 there are only reducible

examples. There are no examples on tori of dimension N ≤ 5 and

N = 7.



An explicit example in dimension 6 (S.Katok)

A =


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,

B =



























0 −6 −6 −3 −6 2

−2 4 4 0 7 −2

2 −6 −6 −2 −10 3

−3 8 9 3 13 −4

4 −11 −12 −3 −17 5

−5 14 14 3 22 −7


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



• Existence in even dimensions N ≥ 6 is related to recurrent

polynomials and symplectic structures.

• In odd dimensions even individual irreducible genuinely

partially hyperbolic automorphisms do not exist.

• In dimension four (and of course two) there is not enough room

for a Z
2 partially hyperbolic action since at least three

hyperbolic directions are needed.

• For odd N ≥ 9 take a product of an irreducible example in

dimension six and hyperbolic action in dimension N − 6

• Dimension seven is excluded because the only split would be

3 + 4.


