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We prove local differentiable rigidity for generic rank 2 restrictions of Weyl chamber

flows by introducing a new “geometric” method in rigidity of actions of higher rank

abelian groups based on the study of the combinatorial structure of the web of Lyapunov

foliations.

1 Introduction

1.1 Actions of higher rank abelian groups and rigidity

In this paper, we make an essential step in realization of the program aiming at showing

modified local differentiable rigidity for a broad class of algebraic (homogeneous and

affine) partially hyperbolic actions of higher rank abelian groups. For a more detailed

discussion of the rigidity program, see the introduction to [5]. For definitions and general

background on partially hyperbolic dynamical systems [18]; all necessary background

on algebraic actions can be found in [10]. We will also strongly rely on definitions,

constructions, and results from our earlier paper [3].

Received October 19, 2010; Revised October 19, 2010; Accepted October 20, 2010

Communicated by Prof. Peter Sarnak

c© The Author(s) 2010. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permissions@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2011/19/4405/883634 by Pennsylvania State U
niversity user on 24 February 2020



4406 D. Damjanović and A. Katok

We consider algebraic actions of Z
k × R

l , k + l ≥ 2. The most general condition

that leads to various rigidity phenomena (cocycle rigidity, local differentiable rigidity,

measure rigidity, etc.) is the following:

(R) The group Z
k × R

l contains a subgroup L isomorphic to Z
2 such that for

the suspension of the restriction of the action to L every element other than

identity acts ergodically with respect to the standard invariant measure

obtained from the Haar measure.

In the present paper, we treat a representative case of partially hyperbolic alge-

braic actions, satisfying condition (R), namely restrictions of the Weyl chamber flow

(WCF) on SL(n, R)/Γ . Results of this paper has been announced in [4]. After this paper

was written, the broad applicability and fruitfulness of this method have been amply

demonstrated, see [2, 20, 21].

1.2 WCF on SL(n, R)/Γ and generic restrictions

Let X := SL(n, R)/Γ with n≥ 4 and Γ a cocompact lattice in SL(n, R). Let D+ =
{(t1, . . . , tn) ∈ R

n,
∑n

k=1 tk = 0} and let D+ = exp D+ be the group of diagonal matrices in

SL(n, R) with positive entries. The action by left translations of D+ on X is the WCF, and

we denote this action by α0. For 0 ≤ i �= j ≤ n, Hi j = {(t1, . . . , tn) ∈ D+ : ti = tj} are Lyapunov

hyperplanes for the action α0. Elements of D+ \ ⋃
i �= j Hi j are called regular. The con-

nected components of the set of regular elements are Weyl chambers. The smallest

nontrivial intersections of stable foliations of various elements of the action α0 are

Lyapunov foliations. Leaves of each Lyapunov foliation are one-dimensional. Each regu-

lar element either exponentially expands or exponentially contracts each of those leaves.

A two-dimensional plane P ⊂ D+ is in general position if it intersects any two

distinct Lyapunov hyperplanes along distinct lines. (It is for the reason of having proper

planes of this kind that we assume n≥ 4 rather than n≥ 3 in the beginning of the current

section.)

Let G ⊂ D+ be a closed subgroup that contains a lattice L in a plane in general

position and let G = exp G. One can naturally think of G as the image of an injective

homomorphism i0 : Z
k × R

l → D+ (where k + l ≥ 2). Restriction of the WCF to a subgroup

G will be denoted by α0,G . The action α0,G is referred to as a generic restriction of the

WCF. It is given by

α0,G(a, x) = i0(a) · x. (1.1)
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Rigidity of Restrictions of WCFs 4407

1.3 Cocycles and rigidity

For an abelian group Y, a Y-valued cocycle over an action α : A× M → M is a continuous

function β : A× M → Y satisfying for any a, b ∈ A:

β(ab, x) = β(a, α(b, x))β(b, x). (1.2)

β is cohomologous to a constant cocycle if there exists a homomorphism s : A→ Y and

a continuous transfer map H : M → Y such that for all a∈ A

β(a, x) = H(α(a, x))s(a)H(x)−1. (1.3)

A cocycle is a coboundary if it is cohomologous to the trivial cocycle π(a) = idY, a∈ A.

For more detailed information on cocycles adapted to the present setting [3].

We proved in [3] that every Hölder (C ∞) cocycle with values in R
m over a generic

restriction α0,G is cohomologous to a constant cocycle via a continuous (C ∞) transfer

map. Unlike proofs of previous cocycle rigidity results for algebraic actions of abelian

groups, the proofs in [3] do not use harmonic analysis at all. Rather, we use the geometric

structure of Lyapunov foliations of the action. In the present paper, we prove robustness

of this approach and we use it to obtain local differentiable rigidity for α0,G . The method

of [3] was further developed in [11] to cocycles with range in nonabelian and infinite-

dimensional groups.

1.4 Formulation of results

Let α0,G be a higher rank generic restriction of WCF with the acting group Z
k × R

l , k + l ≥
2. Our main result is the following theorem.

Theorem 1.1 (Differentiable rigidity of generic restrictions). If α̃G is a C ∞ action of

Z
k × R

l sufficiently C 2-close to α0,G , then there exists a homomorphism i : Z
k × R

l → D+
close to i0 and a C ∞ diffeomorphism h : X → X such that α̃(a, h(x)) = h(i(a) · x) for all

a∈ Z
k × R

l . �

The principal ingredient in the proof of Theorem 1.1 is Theorem 1.2 which is the

main technical result of the present paper. It generalizes the cocycle rigidity result from

[3] to C 2-small perturbations of generic restrictions.
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4408 D. Damjanović and A. Katok

Theorem 1.2. Let α̃G be a sufficiently C 2-small C ∞ perturbation of α0,G . If β is a

Hölder cocycle over α̃G with values in R
k, then β is cohomologous to a constant cocy-

cle given by a homomorphism s : Z
k × R

l → D+ via a continuous transfer function. Fur-

thermore, if the cocycle β is sufficiently small in a Hölder norm, the transfer map is C 0

arbitrary small. �

Other essential ingredients in the proof of Theorem 1.1 are Hirsch–Pugh–Shub

stability theory [6], Theorem 6.1 from Section 6 which describes holonomy of the neu-

tral foliation of the perturbed action along the Lyapunov foliations, and the old “a pri-

ori regularity” method for smoothness of the conjugacy. We prove Theorem 1.1 using

these ingredients in the next section. The rest of the paper is dedicated to the proof of

Theorem 1.2 and Theorem 6.1.

2 Cocycle Rigidity for Perturbations Implies Local Rigidity

2.1 Hölder conjugacy to perturbations along the leaves of the neutral foliation of α0,G

The neutral foliation N0 for α0,G coincides with the orbit foliation of the WCF and is

described in the introduction. Since it is a smooth foliation, we may use the Hirsch–

Pugh–Shub structural stability theorem [6, Chapter 6]. Namely if α̃G is a sufficiently C 1-

small perturbation of α0,G , then for all a∈ A which are regular for α0,G and sufficiently

away from nonregular ones (denote this set by Ā), the diffeomorphism α̃(a, ·) is also

partially hyperbolic. The central distribution is the same for any a∈ Ā and is uniquely

integrable to an α̃(a, ·)-invariant foliation which we denote by N . Moreover, there is a

Hölder homeomorphism h̃ of X, C 0 close to the idX, which maps leaves of N0 to leaves of

N : h̃N0 =N . This homeomorphism is uniquely defined in the transverse direction, that

is, up to a homeomorphism preserving N . Furthermore, h̃ can be chosen smooth and

C 1 close to the identity along the leaves of N0.

Let us define an action αG of G on X as the conjugate of α̃G by the map h̃ obtained

from the Hirsch–Pugh–Shub stability theorem:

αG := h̃−1 ◦ α̃G ◦ h̃.

Clearly, the leaves of the foliation N0 are preserved by every a∈ Ā. The action αG is

Hölder, but it is smooth and C 1-close to α0,G along the leaves of the neutral foliation N0.
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2.2 Proof of Theorem 1.1

Let α̃G be a C ∞ action of Z
k × R

l close to α0,G in C 2 topology and let αG be the conjugate

of α̃G obtained via the Hirsch–Pugh–Shub homeomorphism h̃ as explained in Section 2.1.

Since the action αG is a C 0 small perturbation of α0,G along the leaves {D+ · x : x ∈
X} of N0, we have that αG is given by a map β : (Zk × R

l) × X → D+ by

αG(a, x) = β(a, x) · α0,G(a, x)

for a∈ Z
k × R

l and x ∈ X. We will use multiplicative notation for the abelian group D+
although it is isomorphic to R

n−1 and we will apply Theorem 1.2 to cocycles with values

in D+. Notice that since αG is a small perturbation of α0,G , it can be lifted to a G-action

on SL(n, R) commuting with the right Γ action on SL(n, R), and β is a cocycle over αG

(for more details, see [14, Example 2.3]). In particular we have:

β(ab, x) = β(a, αG(b, x))β(b, x). (2.1)

From this and Section 2.1 it follows that since αG is Hölder, β(a, x) is a small

Hölder cocycle over the action αG , due to the smallness of the perturbation. Thus, by

Theorem 1.2, β is cohomologous to a small constant cocycle s : Z
k × R

l → D+ via a contin-

uous transfer map H : X → D+ which can be chosen close to the identity in C 0 topology

if the perturbation α̃G is small in C 2 topology.

Let us consider the map h′(x) := H−1(x) · x. We have from (2.1) and (1.3)

h′(αG(a, x)) = α0,G̃(a, h′(x))

where α0,G̃(a, x) := i(a) · x, where i(a) := s(a)i0(a), a∈ A and i0 is as in (1.1). Since the map

h′ is C 0 close to the identity, it is surjective and thus the action αG is semi-conjugate to

the standard perturbation α0,G̃ of α0,G , that is, α0,G̃ is a factor of αG .

Proposition 2.1. The map h′ is a homeomorphism that provides a topological conjugacy

between αG and α0,G̃ . �

Proof. It is enough to prove that h′ is injective. Since the map h′ preserves the leaves

of the foliation N0, the pre-image of any point belongs to a single leaf of that foliation.

Furthermore, since h′ is close to identity, the diameter of each such pre-image is small.
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4410 D. Damjanović and A. Katok

Now we pass to the (almost universal) cover SL(n, R). Since the map h′ is close

to the identity on X, it is uniquely lifted to a close to the identity map on the cover for

which we will use the same notation h′. Furthermore, if we show that the lifted map is

injective on the cover, it will follow that the original h′ : X → X is injective and hence a

homeomorphism.

Next we show that if h′(x) = h′(y) and H is an F holonomy, i.e., a product of holon-

omy maps between leaves of N0 within leaves of various center-Lyapunov foliations Wi j,

then h′(H(x)) = h′(H(y)). For the definition and discussion of foliations and holonomies,

see Section 6. Obviously, it is sufficient to prove this for a holonomy H within a single

leaf of Wi j. But this follows immediately from the fact that the semi-conjugacy maps

contracting manifolds of elements of αG into contraction manifolds of corresponding

elements of α0,G̃ .

Since the F holonomy group acts transitively on the leaves of N0 if h′(x) = h′(y),

there is an F holonomy map F of the leaf N x
0 of N0 such that F (x) = y. Hence, h′(F n(x)) =

h′(x) for any integer n, that is, h′ maps the whole F orbit of x to the same point. But by

Corollary 6.1 such orbits cannot have compact closure in the topology of the leaf. This

contradiction proves that h′ is injective. �

Now by letting h := h′h̃−1 we have that h ◦ α̃G ◦ h−1 = α0,G̃ . Thus there is a topo-

logical conjugacy between α̃G and a standard perturbation of α0,G . In particular, the

conjugacy takes Lyapunov foliations of α0,G into those of α̃G . Proving further that the

conjugacy is smooth along the leaves of Lyapunov foliations of α0,G follows by an appli-

cation of the Katok–Spatzier method of nonstationary normal forms [12, Corollary 10

and Section 2.2.2]. The smoothness of h̃ then follows just as in [12] from the fact

that Lyapunov directions for α0,G with their Lie brackets span the tangent space at

every point.

3 Lyapunov Cycles and Cocycle Rigidity

3.1 Preliminaries

Let α : A→ Diff(M) be an action of A := Z
k × R

l on a compact manifold M by diffeomor-

phisms of M preserving an ergodic probability measure μ. Then there are finitely many

linear functionals λ on A, called Lyapunov exponents, a set of full measure Λ and a

measurable splitting of the tangent bundle TΛM = ⊕
λ Eλ, such that for v ∈ Eλ and a∈ A

the Lyapunov exponent of v with respect to α(a) is λ(a).
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Rigidity of Restrictions of WCFs 4411

If χ is a nonzero Lyapunov exponent, then we define its coarse Lyapunov

subspace by

Eχ :=
⊕

{λ=cχ :c>0}
Eλ.

For every a∈ A, one can define stable, unstable, and neutral subspaces for a

by Es
a = ⊕

λ(a)<0 Eλ, Eu
a = ⊕

λ(a)>0 Eλ, and E0
a = ⊕

λ(a)=0 Eλ. In particular, for any a∈ A :=⋂
χ �=0(Ker χ)c, the subspace E0

a is the same and thus can be denoted simply by E0. Hence,

for any such a, there is a splitting: T M = Es
a ⊕ E0 ⊕ Eu

a.

If, in addition, E0 is a continuous distribution uniquely integrable to a foliation

N with smooth leaves, and if there exists a∈ A such that α(a) is uniformly normally

hyperbolic with respect to N (in the sense of the Hirsch–Pugh–Shub [6]) then α is a

partially hyperbolic action. The elements in A which are uniformly normally hyperbolic

with respect to N are called regular. Let Ã be the set of regular elements.

If the set Ã is dense in R
k, then for each nonzero Lyapunov exponent χ and every

p∈ M the coarse Lyapunov distribution is:

Eχ (p) =
⋂

{a∈Ã:χ(a)<0}
Es

a(p).

The right-hand side is Hölder and can be extended to a Hölder distribution tangent to

the foliation Tχ := ⋂
{a∈Ã:χ(a)<0} Ws

a with C ∞ leaves. This is the coarse Lyapunov foliation

corresponding to χ [3, Section 2].

We denote by χ1, . . . , χr a maximal collection of nonzero Lyapunov exponents

that are not positive multiples of one another and by T1, . . . , Tr the corresponding coarse

Lyapunov foliations. Given a foliation Ti and x ∈ M, we denote by Ti(x) the leaf of Ti

through x.

3.2 Paths and cycles for a collection of foliations

Let T1, . . . , Tr be a collection of mutually transversal continuous foliations on M, with

smooth simply connected leaves.

Definition 3.1. For N ∈ N and jk ∈ {1, . . . , r}, k∈ {1, . . . , N − 1}, an ordered set of points

p( j1, . . . , jN−1) : x1, . . . , xN ∈ M is called an T -path of length N if for every k∈ {1, . . . ,

N − 1}, xi+1 ∈ T jk(xk). �
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4412 D. Damjanović and A. Katok

Definition 3.2. For N ∈ N and jk ∈ {1, . . . , r}, k∈ {1, . . . , N}, an ordered set of points

c( j1, . . . , jN) : x1, . . . , xN, xN+1 = x1 ∈ M is called a T -cycle of length N if for every k∈
{1, . . . , N}, xk+1 ∈ T jk(xk). A T -cycle which consists of a single point is a trivial T -cycle. �

Remark. We will denote a T -cycle c( j1, . . . , jN) by c whenever the short notation causes

no confusion. �

Let C(T ) denote the collection of T -cycles. For x ∈ X, let Cx(T ) the collection of

T -cycles with an initial point x. In Cx(T ), cycles c( j1, . . . , jN) : x1, . . . , xk, xk, . . . , xN, xN+1 =
x1 and c( j1, . . . , jN) : x1, . . . , xk, . . . , xN, xN+1 = x1 are identified. In particular, a cycle

x, x, x, . . . , x is identified with the cycle o : x, which is called a trivial cycle.

Now we introduce natural operations in C(T ) modeled on the operations on loops

which appear in the definition of the fundamental group.

• For two cycles in Cx(T ), c( j1, . . . , jN) : x = x1, . . . , xN, xN+1 = x and c′( j′
1, . . . , j′

N) :

x = x′
1, . . . , x′

N, x′
N+1 = x define their composition c ∗ c′ by

c ∗ c′( j1, . . . , jN, j′
1, . . . , j′

N) : x = x1, . . . , xN, x′
1, . . . , x′

N, x′
N+1 = x.

• The inverse of a cycle c := c( j1, . . . , jN) : x1, . . . , xN, xN+1 = x1 is the cycle c−1 :=
c−1( jN, . . . , j1) : x1, xN, . . . , x2, x1.

• Let c( j1, . . . , jN) : x1, . . . , xN, xN+1 = x1 ∈ M be a T -cycle and let y1 ∈ T j(x1) for

some j ∈ {1, . . . , r}. Then we call the cycle

c′( j, j1, . . . , jN, j) : y1, x1, x2, . . . , xN, xN+1 = x1, y1

a conjugate (or a T j-conjugate) of c( j1, . . . , jN).

• Let c( j1, . . . , jN) : x1, x2, . . . , xN, xN+1 = x1 ∈ C(T ), and cn( j1, . . . , jN) :

x(n)
1 , x(n)

2 , . . . , x(n)
N , x(n)

N+1 = x(n)
1 . Then c = limn→∞ cn if for all k∈ {1, . . . , N},

xk = limn→∞ x(n)
k .

Definition 3.3. A T -cycle c( j1, . . . , jN) : x1, . . . , xN, xN+1 = x1 ∈ M is contractible, if there

is a closed path c̃ in M obtained by connecting for each k= 1, . . . , N the points xk and

xk+1 by a path on the leaf of the foliation T jk, and c̃ is contractible. �

Notice that the class of contractible cycles is closed under operations described

above: composition, taking inverse, conjugation, and taking limit.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2011/19/4405/883634 by Pennsylvania State U
niversity user on 24 February 2020



Rigidity of Restrictions of WCFs 4413

3.3 Stable cycles, allowable substitutions, and reducible cycles

Let T1, . . . , Tr be the coarse Lyapunov foliations with smooth leaves of a partially hyper-

bolic action α on M. Notice that under this assumption the leaves of Ti for each i are

simply connected, because every loop within a leaf is mapped by a diffeomorphism into

a loop of an arbitrary small diameter, and hence contractible, inside another leaf.

Definition 3.4. A T -cycle c is called stable for the A action α if there exists a regular

element a∈ R
k such that xk ∈Ws

a(x1) for all k∈ {1, . . . , N}. Denote by ASs
T (α) the collection

of such cycles. �

Notice that every stable cycle is contractible since it is mapped by a diffeomor-

phism to a cycle of arbitrarily small diameter. Simplest examples of stable cycles are

cycles contained in a leaf of some T j foliation.

Definition 3.5. A path p reduces to a path p′ with the same endpoints as p, via an

α-allowable T -substitution of s-type if the T -cycle p ∗ p′ obtained by concatenation of

p and p′ is a stable T -cycle. �

We denote by ASrs
T (α) the collection of all T -cycles that reduce to a trivial cycle,

that is, to a point, via finitely many α-allowable T -substitutions of s-type. In particular,

ASrs
T (α) contains conjugates of all cycles in ASs

T (α). Elements of ASrs
T (α) we also refer to

as substitutions (or allowable substitutions) of rs-type.

Let AST (α) denote the collection of T -cycles which contains ASrs
T (α) and is

closed in C(T ) (under the limiting procedure, Section 3.2).

Definition 3.6. A path p reduces to a path p′ with the same endpoints as p, via an

α-allowable T -substitution if the T -cycle p ∗ p′ obtained by the concatenation of p and

p′ is in the collection AST (α). Accordingly, cycles in AST (α) are called α-allowable

T -substitutions. �

Remarks.

(1) We will sometimes use the notation AST (α)x (corr. ASs
T (α)x, ASrs

T (α)x) for T
cycles in AST (α) (corr. ASs

T (α), ASrs
T (α)) with initial point x.

(2) Since the leaves of Ti for all i ∈ {1, . . . , r} are simply connected, the cycles in

AST (α) are contractible.
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(3) Paths and cycles for a collection T of foliations which are Lyapunov folia-

tions for a partially hyperbolic action we often refer to as to Lyapunov paths

and Lyapunov cycles. �

Definition 3.7. Two T -cycles c1 and c2 are α-equivalent, if c1 reduces to c2 via a

finite sequence of α-allowable T -substitutions. A T -cycle is called α-reducible, if it is

α-equivalent to a trivial T -cycle, that is, if it can be reduced to a point via finitely many

α-allowable T -substitutions. Clearly, all T -cycles in AST (α) are T -reducible. �

The set of T -cycles Cx(T ) with an initial point x ∈ X factored by the relation of α-

equivalence is denoted by R(α, T )x. It clearly has a group structure under the operation

induced by concatenation of T -cycles at x.

The following lemma immediately follows from the fact that every T -cycle of

the type c : x, y, x where y∈ T j(x) for some j ∈ {1, . . . , r}, is a stable T -cycle and thus is

α-reducible.

Lemma 3.1. For every i ∈ {1, . . . , r} and x ∈ M, y∈ Ti(x), the groups R(α, T )x and R(α, T )y

are isomorphic. �

3.4 Transitivity of foliations

For a submanifold Y in M, dY(x, y) denotes the infimum of lengths of smooth curves in Y

connecting x and y.

Definition 3.8. A collection T of foliations T = {T1, . . . , Tr} is called transitive, if there

exist N ∈ N and R> 0 such that any two points x, y∈ X can be connected by a T -path

p( j1, . . . , jN−1) : x1 = x, x2, . . . , xN = y such that xk+1 ∈ T jk(xk) and dT jk(xk)(xk+1, xk) < R. �

Lemma 3.2. If T is a transitive collection of coarse Lyapunov foliations of a partially

hyperbolic action α, then, for x ∈ M, R(α, T )x are all isomorphic and hence can be

denoted by R(α, T ). �

Proof. For x and y in M due to transitivity of the collection T of foliations T1, . . . , Tr,

there exists a T -path p( j1, . . . , jN−1) : x = x1, x2, . . . , xN−1, xN = y. Now, because of the

invariance in Lemma 3.1, we have that R(α, T )x
1 =R(α, T )x2 = · · · =R(α, T )xN . Thus

R(α, T )x =R(α, T )y. �
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We remark that as in the case of the fundamental group, the isomorphism

between R(α, T )x and R(α, T )y need not be canonical.

Definition 3.9. Foliations T1, . . . , Tr are locally transitive (denoted this property by LT),

if there exists N ∈ N such that for any ε > 0 there exists δ > 0 such that for every x ∈ M

and for every y∈ BM(x, δ) (where BM(x, δ) is δ ball in M) there is a T -path p( j1, . . . , jN−1) :

x = x1, x2, . . . , xN−1, xN = y in the ball BM(x, ε) such that xk+1 ∈ T jk(xk) and dT jk(xk)(xk+1,

xk) < 2ε. �

Remark. Both transitivity properties defined above are preserved under a Hölder con-

jugacy. The same holds true for the group R(α, T ) when it is well defined, that is, when

T is a transitive collection of Lyapunov foliations for an action α. Notice that local

transitivity implies transitivity [1]. �

3.5 Reducibility and cocycle rigidity

Two propositions in this section are easy consequences of [3, Proposition 4] and our

definition of α-reducible cycles.

Definition 3.10. For a partially hyperbolic A-action α on a compact manifold M with

coarse Lyapunov foliations T1, . . . , Tr and for a cocycle β : A× M → Y over α, where Y is

an abelian Lie group, we define Y-valued potential of β as

P j
a (y, x) = lim

n→+∞ β(na, y)−1β(na, x), χ j(a) < 0 (3.1)

P j
a (y, x) = lim

n→−∞ β(na, y)−1β(na, x), χ j(a) > 0 (3.2)

where a is a regular element in A, j ∈ {1, . . . , r}, x ∈ M and y∈ T j(x).

For any T -cycle c : x1, . . . , xN+1 = x1 on M, we define the corresponding periodic

cycle functional (PCF):

PC F (c)(β) =
N∏

i=1

P j(i)
a (xi, xi+1)(β). (3.3)

It is proved in [3] that the expression for PCF does not depend on the choice of a. �

Two essential properties of the PCF which are crucial for our purpose are

that PCF is continuous and that it is invariant under the operation of moving cycles
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around by elements of the action α. The latter property has an immediate consequence

that PCF vanishes on all stable cycles and all cycles which can be reduced to a triv-

ial cycle via α-allowable T -substitutions of s-type or rs-type. The former allows us

to consider limits of cycles and implies that PCF vanishes on any cycle which can

be reduced to a trivial one via α-allowable substitutions, that is, on any α-reducible

cycle.

Proposition 3.1. If T : T1, . . . , Tr is an LT collection of coarse Lyapunov foliations for

a partially hyperbolic A-action α and if the group R(α, T ) has no nontrivial homomor-

phism into R
l , then every Hölder R

l-valued cocycle over α is cohomologous to a constant

cocycle via a continuous transfer function.

If the cocycle is smooth, then the transfer map is smooth along the leaves of the

coarse Lyapunov foliations in T . �

Proof. Let Cx(T ) be the collection of T -cycles with initial point x ∈ M. If f : Cx(T ) → R
l

is a map such that: (1) f(c ∗ c1) = f(c) + f(c1) for c, c1 ∈ Cx(T ), where ∗ denotes concate-

nation of cycles at point x, (2) f vanishes on all stable T -cycles, and (3) f is continuous,

then, by the definition of α-reducible T -cycles we have that f vanishes on all α-reducible

T -cycles in Cx(T ). Thus f defines a homomorphism from R(α, T ) into R
l which by

assumption has to be trivial. Therefore, f vanishes on all T -cycles in Cx(T ) and since x

is arbitrary, on all T -cycles.

Now we use [3, Proposition 4]. The PCF which appears in [3, Proposition 4]

satisfies conditions (1), (2), and (3) ([3, Section 3]), thus by the above analysis the PCF

vanishes on all T -cycles. This implies trivialization of R
l-valued cocycles over α by

[3, Proposition 4]. �

Proposition 3.2. Let T : T1, . . . , Tr be an LT collection of coarse Lyapunov foliations of a

partially hyperbolic A-action α. Suppose that

(1) If T -cycle c is contractible, then there exists n∈ N such that cn is α-reducible.

(2) π1(M) has no nontrivial homomorphism into R
l ,

then every R
l-valued Hölder cocycle over α is cohomologous to a constant cocycle. If the

cocycle is smooth, then the transfer map is smooth along the leaves of the foliations in

T . If the cocycle is small on a compact set of generators of A, uniformly on M in some

Hölder norm, then the transfer map is C 0 close to the trivial one. �
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Proof. By assumption a power of any contractible T -cycle is α-reducible, and the PCF

vanishes on all α-reducible cycles, thus the PCF vanishes on a power of any contractible

T -cycle. Since PCF takes the concatenation of two cycles to the sum of their correspond-

ing PCFs, it follows that PCF vanishes on every contractible T -cycle. Hence PCF induces

a homomorphism from π1(X) into R
l . Since it has to be trivial by assumption, PCF is

trivial on every T -cycle. Thus the claim follows from [3, Proposition 4].

In particular, if the cocycle is small on generators in some Hölder norm, then

due to local transitivity of T -foliations and from the computation in [3, Proposition 2],

the transfer map obtained by this construction is C 0 close to the trivial one. �

4 Lyapunov Cycles and Allowable Substitutions for α0,G

4.1 Lyapunov foliations for α0 and α0,G

Let eij(t), 1 ≤ i, j ≤ n, i �= j be the standard unipotent one-parameter subgroups in

SL(n, R) and let Ui j be the corresponding homogeneous unipotent foliations of X. For

x ∈ X = SL(n, R)/Γ , the leaf of Ui j through x is U x
ij = {eij(t)x|t ∈ R}. These foliations are

invariant under the action by left translations of any element in D+ and are the coarse

Lyapunov foliations for α0, that is, for the full WCF. If P is a two-plane in general posi-

tion, then the foliations Ui j, 1 ≤ i, j ≤ n, i �= j are also coarse Lyapunov foliations for α0,P .

The leaves of Ui j are intersections of the leaves of stable manifolds of the action by dif-

ferent elements of P. See [3, Section 5.2] for details. The same holds for the action by

any regular lattice in P and thus for any generic restriction α0,G . We denote by U the

collection Ui j, 1 ≤ i, j ≤ n, i �= j. The neutral foliation for α0,G is N0, the orbit foliation of

the full WCF.

The following is a simple consequence of the fact that the foliations Ui j are

totally nonintegrable of index 2 (i.e., the vector fields tangent to Ui j, 1 ≤ i �= j ≤ n and

their Lie brackets already span the tangent space at any x ∈ X), see [1, Theorem 4.2]

or [9, Proposition 1].

Proposition 4.1. Foliations Ui j are locally 1
2 -Hölder transitive. �

4.2 Elementary Lyapunov cycles for α0,G

One consequence of the Steinberg description of central extensions [19] is the following:
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4418 D. Damjanović and A. Katok

Steinberg Theorem. The group SL(n, R) is generated by unipotent elements eij(t), t ∈
R, 1 ≤ i �= j ≤ n subject to relations:

eij(t)eij(s) = eij(t + s) (4.1)

[eij(t), ekl(s)] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, j �= k, i �= l

eil(st), j = k, i �= l

ekj(−st), k �= j, i = l

(4.2)

h12(t)h12(s)h12(ts)
−1 = 1 (4.3)

where h12(t) := e12(t)e21(−t−1)e12(t)e12(−1)e21(1)e12(−1) for each t ∈ R
∗. �

We call the U-cycles induced by the relations above, elementary U-cycles, and

those induced by (4.3) we call diagonal cycles. The structure of diagonal cycles is well

understood: set of all diagonal cycles at a point x with the operation of concatenation of

cycles at a point x is related to the group K2R which has the following presentation [15].

Matsumoto Theorem. The group K2R is generated by symbols {s, t}, s, t ∈ R
∗ subject to

relations:

1. {s′, t}{s, t} = {s′s, t}, {s, t}{s, t′} = {s, tt′}
2. {s, 1 − s} = 1, s �= 1

3. {s,−s} = 1

where R∗ denotes the multiplicative group of nonzero real numbers. �

The following lemma is crucial for the method developed in this paper. Namely,

it demonstrates that the contractible diagonal cycles even when not reducible to stable

are in fact limits of U-cycles that are reducible to stable ones.

Lemma 4.1. Each elementary U-cycle, if contractible, induces an α0,G-allowable

U-substitution:

(1) U-cycles induced by relations (4.1) and (4.2) are in ASs
U (α0,G).

(2) U-cycles induced by relations (4.3) with s ≥ 0 or t ≥ 0 are in ASU (α0,G).
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Rigidity of Restrictions of WCFs 4419

(3) U-cycles induced by relations (4.3) with s, t both negative, can be reduced

via α0,G-allowable T -substitutions of rs-type to a U-cycle induced by the

relation {−1,−1}. If doubled, those cycles are also in ASU (α0,G). �

Proof. (1) From the assumption that α0,G is a generic restriction of the WCF (see [3,

Proposition 7]), we have that ASs
U (α0,G) =ASs

U (α0). In particular, all commu-

tator U-cycles induced by relations (4.1) and (4.2) are stable for α0,G and thus

are contained in ASs
U (α0,G).

(2) Each generator {s, t} of the group K2R induces at any given point x ∈ X a

U-cycle. Call it cx
{s,t}. It is a U-cycle that consists of 18 points and is induced

by the corresponding relation h12(s)h12(t)h12(st)−1 = 1 in (4.3) with the initial

point x, where h12(t) is as in (4.3).

Relations 1., 2., and 3. in Matsumoto Theorem are proved by using only relations

(4.1), (4.2), and/or their conjugates, see for example [16, Chapter 11]. This implies that

U-cycles cx
{s,t}{s,t′}{s,tt′}−1 , cx

{s,t}{s′,t}{ss′,t}−1 , cx
{s,1−s} and cx

{s,−s} are in ASrs
U (α0,G).

In particular, since cx
{s,t}{s,t′}{s,tt′}−1 = cx

{s,t} ∗ cx
{s,t′} ∗ cx

{s,tt′}−1 , this implies that, if cx
{s,t}

and cx
{s,t′} are in ASrs

U (α0,G), then so is cx
{s,tt′}. Similarly, if cx

{s,t} and cx
{s′,t} are in ASrs

U (α0,G),

then so is cx
{ss′,t}. This combined with the fact that cycles cx

{3,−3} and cx
{3,−2} are in

ASrs
U (α0,G) (due to 2. and 3. of Matsumoto Theorem) implies that all cx

{3,(−3)i(−2) j} are in

ASrs
U (α0,G). This holds true not only for positive powers i and j but also for negative

ones by using inverses in the group K2R.

Since the sequence {(−3)i(−2) j}i, j is dense, we have that c{3,t} for every t ∈ R
∗ is a

U-cycle which is a limit of elements in ASrs
U (α0,G), so it is in ASU (α0,G).

Similarly, starting with cx
{4,−3} ∈ASrs

U (α0,G) and cx
{4,−4} ∈ASrs

U (α0,G) (again due to 2.

and 3. of Matsumoto Theorem), we get cx
{4,t} is in ASU (α0,G) for every t ∈ R

∗. Thus every

cx
{3i4 j ,t} is in ASU (α0,G) and so is any limit, that is, any cx

{s,t}, for s > 0. In a similar way,

one obtains cx
{s,t} ∈ASU (α0,G), t > 0. This proves part (2). Proof of part (3) is similar and

we omit it.

This proof is an analogue for cycles of Milnor’s proof in [16, Theorem A1] that

continuous Steinberg symbols over R
∗ have an order 2 . �

4.3 Lyapunov cycles for α0,G

Any U-path which consists of N points is determined by its initial point x and an ordered

sequence of unipotent elements eik jk(tk), k= 1, . . . , N.
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4420 D. Damjanović and A. Katok

Every contractible U-cycle is represented by a relation

ei1 j1(t1), . . . , eiN jN (tN) = 1 (4.4)

in the group SL(n, R). Call this U-cycle u. Using the presentation of SL(n, R) from the

Steinberg Theorem, every relation of the type (4.4) above is a product of relations

(4.1),(4.2), (4.3), and/or their conjugates. If u is contractible, then the product involves

elements with s and t not both negative from (4.3). Therefore, via elementary U-cycles

u can be reduced to the trivial cycle that is, to a point. From Lemma 4.1, all elemen-

tary U-cycles of this type and their conjugates are in ASU (α0,G). Since the leaves of

Ui j-foliations are simply connected, we have the following:

Proposition 4.2. For a generic restriction α0,G , all contractible U-cycles are

α0,G-reducible and vice versa, hence R(α0,G,U) is isomorphic to π1(X). �

Now let α̃G be a C 2-small smooth perturbation of a generic restriction α0,G .

The goal of the next two sections is to establish that the structure of Lyapunov cycles

for α̃G is not very different from that of α0,G .

5 Preliminaries on Perturbations of α0,G

5.1 Lyapunov foliations for perturbations of generic restrictions

From this point on we assume αG is a Hölder perturbation of α0,G along the leaves of the

neutral foliation N0, which is smooth along the leaves of that foliation. (See Section 2.1.)

Denote the collection of Lyapunov foliations for α̃G by F̃ . Since α̃G and αG are con-

jugate via a Hölder map, the stable and unstable, and thus the corresponding Lyapunov

foliations are dynamically defined for the action αG . Denote the collection of Lyapunov

foliations for αG by F . Notice that we do not know whether the leaves of those folia-

tions are smooth manifolds. However, every foliation in F is integrable with N0 and the

resulting center-Lyapunov foliation does have smooth leaves since it coincides with the

center-Lyapunov foliation for α0,G .

Let 1 ≤ i �= j ≤ n, let a1, . . . , am be different elements within the Weyl chambers in

G and away from the Weyl chamber walls (i.e., in Ā) such that Ui j = ⋂m
k=1 Ws

ak
(i.e., such

that χi j(ak) < 0, where Ws
ak

is the stable foliation for α0(ak, ·) and χi j Lyapunov exponents

for the action α0,G ). Let F̃i j = ⋂m
k=1 W̃s

ak
be the corresponding Lyapunov foliations for α̃.

Denote Lyapunov foliations h̃−1F̃i j for αG by Fi j. Although we do not know whether the
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foliations Fi j have smooth leaves, they are simultaneously homeomorphic to the folia-

tions F̃i j with smooth leaves. Thus we can apply all notions developed in Section 3 to

the collection Fi j. We will do that from now on.

5.2 Stability of local transitivity

In [1] Brin and Pesin show that the property of local transitivity of stable and unstable

foliations of a partially hyperbolic diffeomorphism persists under C 2-small perturba-

tions. This implies the following.

Proposition 5.1. If α̃G is sufficiently C 2-close to α0,G , then (1) F̃ are LT and (2) the

Lyapunov foliations of αG are LT. �

Proof. Theorem 4.2 in [1] proves the stability of local transitivity in case of a single

partially hyperbolic diffeomorphism and two foliations of high regularity (stable and

unstable); the same argument applies here in the case of several smooth foliations. The

statement (2) of Proposition 5.1 is an immediate corollary of the fact that α̃G and αG are

conjugate via a Holder homeomorphism. �

6 Holonomy and Canonical Projections

In this section, we will move back and forth between the phase space X = SL(n, R)/Γ

and its covering SL(n, R) and use the same notation in both cases for all the invariant

foliations. Since α0,G and αG both lift to the covering, the notions of reducible cycles and

of all the collections defined in Section 3.3 such as ASU (α0,G) and ASF (αG) make sense

and we keep here the same notation.

Remark. Notice that SL(n, R) is not the universal cover for X but for n≥ 3 it is almost

so, namely, the universal cover is a double cover of SL(n, R). We could use the universal

cover in the subsequent discussion, but it would make essentially no difference so we

stick to the more familiar SL(n, R). �

6.1 U- and F-holonomies

The foliations N0 and Ui j on the covering space SL(n, R) integrate to an invariant foli-

ation Wi j with the product structure. This foliation is also invariant for αG . Moreover,

every leaf of Fi j inside this foliation intersects every leaf of N0 at a unique point. Thus we
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can define U-holonomy (along the leaves of Ui j) and F-holonomy (along the leaves of Fi j)

between different leaves of N0 within a leaf of Wi j.

Now consider products of holonomies for different i, j pairs. In particular, for

every U-path and every F-path with endpoints on the same leaf of N0, the product of

these holonomies is a map of the leaf. It follows immediately from the commutation

relations in SL(n, R) that any U-holonomy is a translation and hence depends only on

the endpoints in a leaf of N0. Since the collection of Lyapunov foliations Ui j is LT, every

translation appears as a holonomy of a leaf N0. Hence the group of U-holonomies is an

abelian group isomorphic to D+ and acting simply transitively on each leaf of N0.

Proposition 5.1 shows that F-foliations on X are LT. Since we consider

F-holonomies on the cover, we make use of the following fact.

Lemma 6.1. Foliations Fi j, 1 ≤ i �= j ≤ n on SL(n, R) are transitive. �

Proof. We need to show that any two points x and y in SL(n, R) can be connected by an

F-path. Since the foliations Fi j are transitive on X, it suffices to show that for a set of

generators of Γ there are closed F-paths on the compact manifold that represent those

generators of the fundamental group. This is true for U-paths. Take the corresponding

F-paths (canonical projections of the U-paths); they may not be closed but are nearly so

because the paths are of uniformly bounded length and the perturbation is small. Then,

by local transitivity (Proposition 5.1), this small gap can be filled by a small F-path. Con-

catenation of that path and the F-path obtained as a projection of a U path representing

some generator γ ∈ Γ gives an F-path in SL(n, R) which represents γ . �

Theorem 6.1. The group of F-holonomies acts simply transitively on each leaf of N0. �

We postpone the proof of Theorem 6.1 to Section 7.1. Here we prove its corollary.

Corollary 6.1. The group of F-holonomies has no compact subgroups. �

Proof. By Theorem 6.1 the group of F-holonomies is homeomorphic to R
n, thus it is

isomorphic to a Lie group (by Montgomery and Zippin [17]). If K AN is the Iwasawa

decomposition of the Lie group of F-holonomies, then the group is homotopic to com-

pact K and since the group of F-holonomies is contractible, so is K. But any compact

contractible topological group is trivial (see for example [8]), thus K is trivial and the

group of F-holonomies is solvable. Since a solvable simply connected Lie group cannot

have compact subgroups [7, Theorem 2.3], the claim follows. �
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6.2 Correspondence between Lyapunov paths for α0,G and for αG

Now we define continuous maps (depending on a given foliation and a leaf) which take

leaves of Fi j to leaves of Ui j and vice versa within the same center-Lyapunov leaf of

Wi j on the covering space, as projections along the leaves of the neutral foliation N0.

These maps which we call canonical projections will allow us further to map F-cycles

to (possibly open) U-paths and U-cycles to F-paths.

In particular, since the canonical projections take pieces of the stable foliation

for a regular element of one action to pieces of the stable foliation for the same element

of the other action, they take stable F-cycles to stable U-cycles and vice versa. This is

the key observation for our study of correspondences between F-cycles and U-cycles.

However, not all U-cycles, even contractible ones, are stable, see (4.3) in Section 4 and

remarks thereof.

In this section, we relate the reducibility classes of U-cycles and the reducibility

classes of F-cycles.

Proposition 6.1.

(1) Let x ∈ SL(n, R), and x′ ∈ U x
ij, y∈N x

0 . Then Px,y
ij : x′ �→F y

ij ∩ N x′
0 is a well-

defined and continuous map from U x
ij to F y

ij.

(2) Let x ∈ SL(n, R), and x′ ∈F x
ij, y∈N x

0 . Then P̄x,y
ij : x′ �→ U y

ij ∩ N x′
0 is a well-

defined and continuous map from F x
ij to U y

ij. �

Proof. (1) We have x′ = eij(t) · x for some t ∈ R and y= d · x for some d∈ D+. We first

show that the intersection of F y
ij and N x′

0 exists whenever y and x′ are as

above. It is immediate then, that such an intersection is unique. It follows

from the fact that αG is a conjugate of an action which is C 2-close to α0,G that

the leaves of the corresponding Lyapunov foliations are C 0 close on compact

sets. But the piece of the foliation Ui j between x and x′ may be rather long.

So, in order to define a projection, we first make it small. To do this, choose

an element in Ā which contracts Ui j, that is, such that χi j(a) < 0. Consider

the U-path along U z
ij between z := α0,G(a, y) = d(a, y) · y (where d(a, y) is some

element in D+) and z′ := d(a, y)d · x′ = eij(t′) · z. For the properly chosen a, the

length of this piece of U z
ij leaf is sufficiently small so that the neutral leaf

through z′ intersects the leaf F z
ij at a point w. Now define y′ := αG(a−1, w).

From the construction, this point lies both on F y
ij and on N x′

0 , so we may

define Px,y
ij (x′) = y′.
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(2) Let x ∈ SL(n, R), let 1 ≤ i �= j ≤ n and let x′ ∈F x
ij. Let y∈N x

0 , y= d · x for some

d∈ D+. Choose an element a∈ Ā which contracts Fi j. Translate the leaf F x
ij

by this element and obtain points z := αG(a, x) and z′ := αG(a, x′) ∈F z
ij. Now

if a was chosen properly, the piece between z and z′ is small enough so that

N z′
0 intersects U z

ij at some point w. Since z= αG(a, x) ∈N y
0 , z= d1 · y for some

d1 ∈ D+. Therefore, the point y′ := d−1
1 · w lies both on U y

ij and on N x′
0 , so we

may define P̄x,y
ij (x′) := y′. �

Maps Px,y
ij and P̄x,y

ij we call canonical projections. It is clear that:

P̄ y,x
ij (Px,y

ij (x′)) = x′ and P y,x
ij (P̄x,y

ij (x′)) = x′.

Definition 6.1. Let c : x1, . . . , xm−1, xm = x1 be a U-cycle with initial point x1. Then the

canonical projection of this path at a point y := d · x1, d∈ D+ is an F-path Px1,y(c) : y1 =
y, y2, . . . , ym such that for each k∈ {1, . . . , m − 1} we have yk+1 :=Pxk,yk

i(k) j(k)(xk+1). �

The projected path Px1,y(c) need not be closed, but since the projection is along

the leaves of the neutral foliation N0 we have that ym ∈N y1
0 , that is, ym = dx,y(c) · y1

for some dx,y(c) ∈ D+. The map (x, y, c) → dx,y(c) is continuous due to continuity of

projections.

Similarly, define the reverse projection P̄x1,y(c) of an F-cycle c with an initial

point x1 and to a (possibly open) U-path starting at y, using canonical projections P̄x,y
ij .

The difference between the endpoints along the leaves of N0 will be denoted by d̄x,y(c).

The following lemma is one of the main links between unperturbed (algebraic) and the

perturbed (nonalgebraic) setting.

Lemma 6.2. Canonical projections have the following properties:

(1) Px,y :ASs
U (α0,G)x →ASs

F (αG) and P̄x,y : ASs
F (αG)x →ASs

U (α0,G).

(2) Px,y :ASrs
U (α0,G)x →ASrs

F (αG) and P̄x,y : ASrs
F (αG)x →ASrs

U (α0,G).

(3) Px,y :ASU (α0,G)x →ASF (αG) and P̄x,y : ASF (αG)x →ASU (α0,G).

(4) Canonical projections Px,y map α0,G-reducible U-cycles in Cx(U) to αG-

reducible F-cycles in Cy(F) and conversely P̄x,y map αG-reducible F-cycles

in Cx(F) to α0,G-reducible U-cycles in Cy(U). �

Proof. Lemma 6.2 is an immediate consequence of the Definition 6.1 of canonical pro-

jections, that is, the fact that any canonical image of a stable leaf is a stable leaf, and

the continuity of canonical projections. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2011/19/4405/883634 by Pennsylvania State U
niversity user on 24 February 2020



Rigidity of Restrictions of WCFs 4425

Remark. Since reducible cycles project to reducible cycles, it follows immediately that

canonical projections of any two cycles in the same reducibility class have the same

endpoints on the leaf of N0, that is, the maps dx,x and d̄x,x do not depend on the repre-

sentative from the given reducibility class. �

6.3 Canonical projections of U-cycles

Lemma 6.3. Let u be a U-cycle.

(1) If u is contractible, the projection of u is an F-cycle.

(2) If u is not contractible, its projection is an F-path such that the dis-

tance between its endpoints is small of the order of the smallness of the

perturbation αG .
�

Proof. (1) The claim for contractible U-cycles is a consequence of the discussion pre-

ceding Proposition 4.2 and of Lemma 6.2. Namely every contractible U-cycle

in SL(n, R) is represented by a relation in the group SL(n, R) which is α0,G-

reducible due to the Steinberg theorem and Lemma 4.1. Now since α0,G-

reducible U-cycles project to αG-reducible F-cycles, the claim follows.

(2) If a U-cycle u in SL(n, R) is not contractible, then it is in the same

homotopy class, thus in the same reducibility class, as a cycle gener-

ated by the relation {−1,−1} = id. Such a cycle is given by the relation

(e12(−1)e21(1)e12(−2)e21(1)e12(−1))2 = 1 so it is symmetric, so a U-cycle u0

generated by this relation projects in the same way as its inverse. So even

though u2
0 projects to a closed F path, the cycle u0 may project to an open

F-path with opening d∈ D+. It is still true, however, that due to the small-

ness of the perturbation d must be small for this u0 and thus for any other

U-cycle u which is in the same reducibility class as u.
�

6.4 Canonical projections of F-cycles

Let now C x denote the collection of contractible F-cycles starting at x in SL(n, R) and

define the following subset of D+:

D(x) := {d̄x,x(c) : c ∈ C x}

where d̄x,x(c) is defined in Section 6.2 via endpoints of U paths which are obtained as

canonical projections Px,x(c).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2011/19/4405/883634 by Pennsylvania State U
niversity user on 24 February 2020



4426 D. Damjanović and A. Katok

Since for c ∈ C x the element d̄x,x(c) ∈ D+ does not depend on the initial point of

the projection, the set D(x) is a subgroup of D+ and we will denote d̄x,x(c) simply by d̄(c)

whenever it is clear what the initial point x is.

Lemma 6.4. For all x, D(x) is the same subgroup of D+, denoted by D. �

Proof. Let c be in C x and such that d̄(c) �= 1. Let z∈F x
ij and consider the closed path

beginning at z which is obtained from c by adding at point x the piece of the leaf of Fi j

from z to x at the beginning and in the opposite direction at the end of c. Call this new

path c̄.

The endpoints of any two projections of a two point path contained in a leaf

of some Fi j are obtained by the action of the same element of the full WCF. If d̄(c) =
diag(d1, . . . , dn), then direct matrix multiplication shows that eij(t) · d̄(c) · eij(sij(t)) ∈ D+
implies for every pair i, j, i �= j, disij(t) = −djt. Moreover, in this case, we have eij(t) ·
d̄(c) · eij(sij(t)) = d̄(c), so by moving along the leaves of foliations Fi j the N0 distance

between the endpoints of any projection to U-paths does not change. In particular,

D(x) does not change along the leaves of foliations Fi j. By Lemma 6.1, foliations Fi j,

1 ≤ i, j ≤ n constitute a transitive system on SL(n, R). This implies that D(x) is constant

everywhere. �

Lemma 6.5. The group D is discrete. �

Proof. For any d∈ D+, there is a canonical (unique) way of representing it as a product

of elementary diagonal matrices hij(t). Namely,

d= h12(t1) · h23(t2) . . . hn−1,n(tn−1)

and for each i ∈ {1, . . . , n− 1} and any t ∈ R
∗, hi,i+1(t) is defined as in the Steinberg

theorem. For any x ∈ SL(n, R), the above expression for d defines a U-path which con-

sists of 6(n− 1) arcs along leaves of foliations Ui j for various (i, j). Call such a path

a standard U-path. So, to any d∈ D and to any point x, there corresponds a standard

U-path denoted by ud,x which connects x and dx.

Assume that the connected component of the identity D0 in the group D is non-

trivial. Pick d∈ D0 of norm 1. Let c be an F-cycle in C x such that d̄(c) = d. Now to d of

norm 1, there corresponds a standard U-path ud,x consisting of a fixed number of arcs

(at most 6(n− 1) arcs) and moreover, the lengths of these arcs are uniformly bounded
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since d is of norm 1. Let ũ be the closed U path which consists of the standard U-path

ud,x and the projection u = P̄x,x(c).

By Lemma 6.3, the projection Px,x(ũ) is a closed F-path if ũ is contractible,

and since c is a closed F-path, it follows that the projection of the standard path

cd :=Px,x(ud,x) is also a closed F-path at x.

Since the length of arcs in ud,x is uniformly bounded, each of the links of Px,x(ud,x)

is close (the order of the smallness of the perturbation) to the corresponding link of ud,x

and for any d the number of links of Px,x(ud,x) is at most 6(n− 1). Hence the endpoint dx

is close to x, that is, d has to be small which is in contradiction with d being of norm 1.

If ũ is not contractible, then one only needs to double it in order to get a con-

tractible path, so the argument above applies in the same way, that is, d is obtained

by projecting a U-cycle with a fixed number of links of bounded length, thus has to be

small, which again contradicts d being of norm 1.

Thus, D0 = {id} and D is discrete. �

Corollary 6.2. Every F path of sufficiently small diameter is αG-reducible. �

Lemma 6.6. The group D is trivial. �

Proof. Without loss of generality (taking the double if necessary), if D is not trivial we

may suppose that there is a (very long) contractible F-cycle c with base point x whose

canonical projection is not closed. Let cs, 0 ≤ s ≤ 1 be a homotopy fixing x between c = c0

and the trivial cycle c1.

For any ε > 0, one can find M such that we can construct a finite sequence of

F cycles c0 = c = c0, c1, . . . , c
M = c1 such that for k= 0, 1, . . . , M ck is C 0, ε close to ck/M

as a parametrized path, that is, a map [0, 1] → X. If M is chosen large enough, then C 0

distance between ck and ck+1 will be < 2ε for each k, 0 ≤ k≤ M − 1.

If ε is chosen small enough, this implies that the cycles ck and ck+1 are αG equiv-

alent. For, the cycle ck+1 ∗ (ck)−1 is conjugate to a composition of cycles of diameter < 4ε.

Each of those cycles is αG-reducible by Corollary 6.2. Hence, the original cycle c is equiv-

alent to the trivial cycle and hence is αG-reducible. This implies by Lemma 6.2 that its

canonical projection is a U-cycle, a contradiction. �

Corollary 6.3. Every projection of every F-cycle on SL(n, R) is a U-cycle. �

Proposition 6.2. If c is a contractible F-cycle, then c or c ∗ c is αG-reducible. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2011/19/4405/883634 by Pennsylvania State U
niversity user on 24 February 2020



4428 D. Damjanović and A. Katok

Proof. Let c be a contractible F-cycle in X. Then, it lifts to a contractible F-cycle c̄ in

SL(n, R) starting at some x. Since d̄x,x(c̄) = id, the U-path u = P̄ x,x(c̄) is a U-cycle on the

cover and therefore it is reducible, or reducible if doubled (Lemma 6.3), so by Lemma 6.2,

the same holds for c̄ and thus the same holds for c. �

7 Proof of Theorems 1.2 and 6.1

7.1 Simple transitivity of F-holonomy: proof of Theorem 6.1

The F-holonomy group acts transitively due to the transitivity of the system of foliations

Fi j. Now let x, y be on the same leaf of N0 and consider two different F-paths p1 and p2

connecting x and y. Then the F-path c′ corresponding to the cycle c := p1 ∗ p−1
2 starting

at any other point on the leaf of N0 is closed. If c is αG-reducible, this is due to the

fact that (the αG-action induced) projections along the leaves of N0 from leaves of F
foliations to leaves of F-foliations preserve reducibility classes, so c′ is also reducible,

so it is an F-cycle. If c is not in the trivial reducibility class, then the map taking c

to the distance between the endpoints of c′ at some different point on the leaf of N0

gives a homomorphism from the group of αG-reducibility classes into D+ and every

such homomorphism is trivial by Proposition 6.2 and the fact that there are no nontrivial

homomorphisms from Γ into D+ ([13, Theorem (4), Chapter 1]). Hence, the corresponding

holonomy map is the identity and the holonomy maps corresponding to p1 and p2 are

the same.

7.2 Cocycle rigidity for a C 2-small perturbation of a generic restriction: proof of Theorem 1.2

Let α̃G be a C 2-small perturbation of a generic restriction α0,G . Let F̃ denote the collec-

tion of Lyapunov foliations of α̃G . Let αG be the action obtained by conjugating α̃G by the

Hirsch–Pugh–Shub homeomorphism as described in Section 2.1. As before, F denotes

the collection of Lyapunov foliations of αG .

By Proposition 6.2, the assumption 1 in Proposition 3.2 is satisfied for F-

foliations of αG . Since this property is preserved by topological conjugacy, Lyapunov

foliations for α̃G , that is, F̃-foliations, also satisfy the first assumption in Proposi-

tion 3.2. Now Theorem 1.2 is an immediate consequence of Proposition 3.2 and the fact

that due to the higher rank assumption any homomorphism from π1(X) into R
l is trivial

[13, Theorem (4), Chapter 1].
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Advanced Mathematics. Zürich: European Mathematical Society (EMS), 2004.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2011/19/4405/883634 by Pennsylvania State U
niversity user on 24 February 2020



4430 D. Damjanović and A. Katok
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