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1. INTRODUCTION

At the Clay Mathematics Institute/Mathematical Sciencesdarch In-
stitute Workshop on “Recent Progress in Dynamics” in SeptawOctober
2004 the speakers and participants were asked to state opelemps in
their field of research, and much of this problem list resuffrem these
contributions. Thanks are due, therefore, to the Clay Matt&s Insti-
tute and the the Mathematical Sciences Research Instiutgeiherously
supporting and hosting this workshop, and to the speakdrs,graciously
responded to the suggestion that open problems be statetewdrepos-
sible, and who in many cases kindly corrected or expandedetiditions
here of the problems that they had posed. It is my hope thadigtiwill
contribute to the impact that the workshop has already hagad helpful
to this endeavor and is a service to the community that mosires from
the workshop can be viewed as streaming video from the MSRIsite.

In this list, almost all sections are based on an originadieerwritten by
myself about the problems as presented by the proposer ik @uiang the
workshop. The proposer is identified by the attribution égented by. . .)”
in the section heading. Where the proposer undertook signifimodifica-
tion of this original version, the section became attriduie the proposer
(without “presented by”). Section 8 and Section 13 were @outed by
their authors without any preliminary draft by myself and&enly slightly
edited by me, and Section 11 is based in good part on the qunestised
by Keith Burns in his talk but was written collaborativelyinglly, the col-
lection of problems | describe in Section 20 was not as suekgnted at
the workshop, but includes problems familiar to many pgrénts.

http://ww.msri.org/calendar/workshops/Workshopl@f¥/showworkshop
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2. SMOOTH REALIZATION OF MEASURE-PRESERVING
TRANSFORMATIONS (ANATOLE KATOK)

Question 2.1.Given an ergodic measure-preserving transformatfioof a
Lebesgue spac& with probability measure:, under which conditions is
there a diffeomorphisryi of a compact manifold/ that preserves a smooth
volumevr for which (f, ) is measurably isomorphic t@", 1)? In particu-
lar, is there anyl" with finite u-entropy for which there is no sugft?

Put differently, is finiteness of entropy (which, as showstflsyy Kush-
nirenko, holds for diffeomorphisms of manifolds with resp& any in-
variant Borel probability measure, seg).,[82, Corollary 3.2.10]) the only
restriction imposed on smooth models of measure-presgtvamsforma-
tions?

A potentially useful method is that of Anosov and Katok [2¢€salso
[34] for a modern exposition) which provides nonstandardatim realiza-
tions of certain dynamical systems. An important pertimestilt is due to
Pesin: For a smooth dynamical system on a surface with pestitropy,
weak mixing implies Bernoulli [120]. Thus there are regtdns on smooth
realizations on particular types of manifolds.

It is expected that there are indeed restrictions on rdaligaother than
finiteness of entropy, so long as one considers smooth mesaguind and
Thouvenot [98] showed that every finite-entropy measuesgmving trans-
formation can be realized as an automorphism of the 2-tortis respect
to a suitable invariant Borel probability measure.) Hewe giicture may be
different for infinite versus finite smoothness. In order $tablish the ex-
istence of such restrictions one needs to construct sortabsiinvariants.
Again, on one hand one may look at specific manifolds or diroess such
as in Pesin’s aforementioned result for maps with posithteopy. For zero
entropy an interesting observation is Herman’s “Last Gaamé&heorem”
[33]:

Theorem 2.2. An area-preserving’> diffeomorphismf of the disk that
has Diophantine rotation number on the boundary has a ctitdacof in-
variant circles accumulating on the boundary.

The Anosov—Katok construction provides examples of navted real-
ization of rotations with Liouvillian rotation numbers. particular, given
any Liouvillian rotation numberp, Fayad, Saprykina and Windsor ([36],
using the methods of [35]) constructed an area-presewigliffeomor-
phism of the disc that acts as the rotationdoyn the boundary and is mea-
surably isomorphic to it.

It should be mentioned here in passing that no nonstandasdtbmeal-
izations of Diophantine rotations are known:
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Question 2.3.Given an ergodic Diophantine rotation, is there an ergodic
volume-preserving diffeomorphism on a manifold of dinmmgreater than
1 that is measurably conjugate to the rotation?

Herman’s Theorem 2.2 suggests that this would be very haadhave
on a disk.

There are several systems where existing methods mightdesle
whether a nonstandard smooth realization exists, suchassza systems,
some interval exchanges, and maybe the horocycle flow on tular
surface.

3. COEXISTENCE OFKAM CIRCLES AND POSITIVE ENTROPY IN
AREA-PRESERVING TWIST MAPS(PRESENTED BYANATOLE KATOK)

Consider the standard (twist) map
f)\(xv y) = (ZE’ +y,y+ Asin 27'('({12' + y))
of the cylinder (or annulusg) := S! x R, which preserves area.

Question 3.1.1s the measure-theoretic entropyea( f») positive (with re-
spect to area as the invariant Borel probability measure)

(1) for smallx > 07?
(2) for some\ > 0 if the problem is considered instead ©h = S x S!
(to provide an invariant Borel probability measure)?

Positive entropy implies the existence of ergodic comptmehpositive
area by a theorem of Pesin [120]. It is generally believet tthmanswers
should be positive.

As to the first part of this question, the KAM theorem is clgaxlperti-
nent issue: For smaN > 0 a large portion of the area of the cylinder is the
union of invariant circles. Nevertheless, the complemenscsts of regions
of instability that give rise to positi®pologicalentropy due to heteroclinic
tangles associated with hyperbolic periodic points. (ffhler dimension the
invariant tori don’t even separate these regions of corafgt dynamics.)
The horseshoes due to these tangles have zero measure ehoavel ev-
erything one can prove using estimates of hyperbolicite tignecessarily
confined to sets of measure zero. To establish positive me#seoretic
entropy, by contrast, requires control on a set of positieasare. In par-
ticular, one must ensure that the invariant circles of ales do not fill a
set of full measure. This set is easily seen to be closed,tdrasia Cantor
structure. Unfortunately the boundary circles acdamong those obtained
by the KAM theorem (this was apparently first observed by Herjmand
they are generally believed to be nonsmooth, which suggeatgroving
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this to be the boundary of the hyperbolic domain will be difficndeed; no
imaginable technique can be expected to serve the purpose.

This illustrates a fundamental problem: Just as Kolmogaliseovered
the essential tools for describing complicated dynamies KAM theorem
established, as illustrated in this essential example ttiesapplicability of
these tools even to mechanical problems faces fundamanttdtions.

As to the second part of the question, it is known that near0.98 - 27
the last KAM circles disappear, so one might hope for the lermlto be-
come tractable. However the elliptic periodic points dalidappear at that
stage. There is a plausible scheme to make all elliptic paiitappear
for certain large parameter values which circumvents thbajlconstraints
of index theory by creating orientation-reversed hypadjmbints and is in-
spired by Jakobson’s parameter-exclusion method for edginal maps[70].
This is aimed at finding parameters for which useful estisyate be car-
ried out.

A “realistic” variant of this problem might be to considendiom pertur-
bations of this system. This is not devoid of difficultiest might be more
tractable.

4. ORBIT GROWTH IN POLYGONAL BILLIARDS (ANATOLE KATOK)

Consider the billiard system in a triangle or, more gengrallpolygon
P C R2. This is an area-preserving dynamical system. The challentp
understand the global complexity of such a system. For elarigt.S(T")
be the number of orbits of length at m@sthat begin and end in vertices.

Problem 4.1. Find upper and lower bounds faf(7).
Question 4.2.1s there a periodic orbit for every choice &f?

This is open even for most obtuse triangles; R. Schwartzasrshow-
ever that if the maximal angle in a triangle is less thaf° then periodic
orbits always exist [129].

Problem 4.3. Find conditions for ergodicity of the billiard flow with respt
to Liouville measure (area). In particular, is the billiaftbw ergodic for
almost everyP?

Boshernitzan and Katok observed that based on the work akiKeff—
Masur—Smillie [88], a Baire category argument producesreseé’s of er-
godic polygons. Vorobets [134] improved this by giving amplit suffi-
cient condition for ergodicity in terms of the speed of sitankous approx-
imation of all angles mod by rationals. Existence of even a single ergodic
example with Diophantine angles remains an open and prplvaby hard
question
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Katok [80] showed thaf'~!log S(T') — 0, which is far from effective.
Forrational polygons Masur [105] showed that there are positive cotstan
C, andC, such thatC,7? < S(T) < C,T?. For some examplese(.,
those leading t&/eech surfacef7]) existence of quadratic multiplicative
asymptotics has been shown and even the constant calculated

Any effective subexponential estimate (suchaagg/ ', say) for arbitrary
polygons would be a major advance.

Conjecture 4.4.limy_,, S(T) /T = 0 for every polygon and evegry>
0, butS(T)/T? is often irregular and unbounded.

It should be said that understanding orbit growth in meatheeretic
terms with respect to the Liouville measure is not a difficulitter; one
can calculate slow entropy and gets a quadratic growth hatkeed, Mafié
observed that the number of connections of length uf' toetween two
randomly chosen boundary points is on average quadrafi¢ ire., statis-
tically one sees quadratic orbit growth. Accordingly, amyidtion from
guadratic orbit growth would be connected to different imaat measures.

The basic problem is the lack of structure here, except tovral poly-
gons where one can represent the problem in terms of a Riemaface
with a quadratic differential and then bring tools of Teidkilar theory to
bear. For irrational polygons one could try to associate enfRnn sur-
face of infinite genus in an analogous fashion, but this Beesi recurrence.
There are some borderline cases where one can use recunrelyoamical
systems that preserve an infinite measure.

The basic problem related to this circle of questions isith#tese para-
bolic systems dynamical complexity arises from a combamedif stretching
and cutting. The stretching is well understood for polyddmiléiards, and
produces quadratic growth (geometrically a shear), bualbsproduces
no periodic orbits; the interesting phenomena arise frottingy which is
poorly understood beyond the fact that growth is subexpitelen

5. FLAT SURFACES AND POLYGONAL BILLIARDS (PRESENTED BY
ANTON ZORICH)

This topic is closely related with the previous one. In fégtunfolding,
rational billiards produce flat surfaces of a special kindwerful methods
based on the study of the Teichmiller geodesic flow on vargitata of
quadratic differentials usually are not directly applieato billiards.

Question 5.1.1s the geodesic flow on a generic flat sphere with 3 singular-
ities ergodic?

Question 5.2.1s there a closed regular geodesic?
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Two copies of a triangle with boundaries identified giveshsacspace,
so this problem is related to polygonal billiards. For soat@nal triangles
the initial direction is preserved and thus provides a firsggral.

Question 5.3.Is there a precise quadratic asymptotic for the growth of
closed geodesics on every genus 2 flat surface?

There is much recent progress (such as the classificationalig @nd
McMullen of Veech surfaces iff (2) — genus 2 with a single conical singu-
larity [20, 106]) to put this question into reach.

6. SYMBOLIC EXTENSIONS (MICHAEL BOYLE AND SHELDON
NEWHOUSE)

Briefly, the effort to understand possible symbolic dynaior a general
topological dynamical system leads to the Downarowiczipheb“entropy
structure”, a master entropy invariant which provides axegfiand precise
structure for describing the emergence of chaos on refintates. This
leads to problems of the compatibility of entropy structwiéh varying
degrees of smoothness.

In the remainder of this section all homeomorphisms aremasduo have
finite topological entropy and to be defined on compact matiez spaces.
If g is the restriction of some full shift on a finite alphabet td@sed shift-
invariant subsysteri, then(Y’, g) is said to be aubshift

Definition 6.1. Given a homeomorphisrfi of a compact metrizable space
X with finite topological entropy, aymbolic extensioof (X, f) is a con-
tinuous surjectionp: Y — X such thatf o ¢ = pogand(Y,g) is a
subshift.

Giveny as above, we may also refer to the subsfiifty) as a symbolic
extension of X, f). A coding of a hyperbolic dynamical system by a topo-
logical Markov shift provides the classical example. Ingeh, the subshift
(Y, g) is required to be a subsystem of some full shift dinée set of sym-
bols, but it need not be a Markov shift and its topological@py (though
finite) need not equal that gf.

Definition 6.2. Thetopological symbolic extension entroplyf is heey( f):=
inf{hp(g)}, where theinf is over all symbolic extensions ¢f. (If there
is no symbolic extension fX, f), thenhs(f) = o0.) Thetopological

residual entropyof f is hres( f) := hgex(f) — hiop(f)-

If hiop(f) = 0, thenhge( f) = 0; otherwise, the residual and topological
entropies are independent, as follows.

Theorem 6.3([14, 27]). If 0 < a < ccand0 < 3 < oo then there is a
homeomorphisnfi with hwp(f) =  andhes(f) = 3.
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Let M, be the space of-invariant Borel probabilities, and létdenote
the entropy function ooV, h(p) = h(u, f). The key to a good entropy
theory for symbolic extensions [12] is to study the extensim terms of
M (as begunin [27]).

Definition 6.4. Letp: (Y, S) — (X, f) be a symbolic extension ¢, f).
The extension entropy function gfis the function

hée: My — [0, +00)
p— sup{h(v,S) : v e My, v =pu}.

For a giveny € M, and a given symbolic extensian, the number
heq(p) measures the information in the symbolic system used todenco
the trajectories in the support pf Define the symbolic extension entropy
function of f,

hgex: Mf - [0,00)
p e inf héx(i),

where theinf is over all symbolic extensions of (X, f). (If there is no
symbolic extension of X, f), then defineh,, = cc.) The functionhl,, is
capturing for allp in M the lower bound on the information required in
any finite encoding of the systemg(, any symbolic extension afX, f))
to describe the trajectories supported.oyrhis function is a highly refined
quantitative reflection of the emergence of chaos (entrapyhe system
(X, f), as it reflects “where” the chaos arises (on the supports a¢hwh
measures) and also “how” (as the scale of resolution on wihielsystem
is examined refines to zero). There is a more thorough eltboraf this
intuition in [28]; in any case, the final justification of th&aon is the full
theory of entropy structure [12, 28].

To make this precise we follow the path of [27, 12, 28] and wial al-
lowed sequence of functiors : My — [0, co) which increase ta. An al-
lowed sequence determines #raropy structuref (X, f). There are many
choices of allowed sequence f@r,, ), studied in [28]; here is one concrete
and crucial (though not completely general) example, whedlects the in-
tuition of “refining scales” Suppos& admits a refining sequence of finite
partitionsP,,, with diameters of partition elements going to zero uniflyrm
in n, and such that the boundary Bfhas,. measure zero, for all in M,
for all n, and for allP in P,,. (Such partitions exist for exampleX is finite
dimensional with zero-dimensional periodic point set [88]f (X, f) has
an infinite minimal factor [101, 99].) Sé#, (1) = h,.(u, f, P.). Then(h,)
defines the entropy structure.

In [12], one general construction of the entropy structsrgiven, and
the collection of all the functiona?,; is given a useful functional analytic
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characterization in terms of the entropy structure. Togetlith [29], this
reduced many problems involving symbolic extensions tblems of pure
functional analysis on a metrizable Choquet simplex. FangXe, it be-
came possible [12] to show the following

e There is a homeomorphisghwith hwes( f) < oo, but with no sym-
bolic extension(Y, ¢g) such thatiep(g) = hiop(f) + hres(f)-

e The functionh{,, is upper semicontinuous and its maximum need
not be achieved at any ergodic measure.

e The topological symbolic extension entropy s the maximum

value achieved by its symbolic extension entropy function.

Another outcome was an inductive characterization of thetioni/,, from

the given sequenck,. Define the tail sequencg := h — h,,, which de-
creases to zero. For ordinalsg, define recursively

o uy; =0

® Uqt1 = hmk(uj%\—;k)

e ug =the u.s.c. envelope efip{u, : a < f}, if §is alimit ordinal.
With these definitions, there is the following theorem.

Theorem 6.5.[12, 28] uy = Uay1 <= u, + h/ = h{,, and such anx
exists among countable ordinals (evehdf, = o).

The convergence above can be transfinite [12], and thisateBdhe sub-
tlety of the emergence of complexity on ever smaller scatéswvever the
characterization is also of practical use for construcéirngmples.

Downarowicz unified the whole theory with an appropriateiorotof
equivalence. Following [28], declare two nondecreasirggieaces of non-
negative functiongh,,) and (h)) to be uniformly equivalenif for every
integern ande > 0 there existsV such that.y > k) — e andh/y > h, —e.
Now, let (h,) be a sequence defining the entropy structure in [12] (given
by a complicated general construction from [12]). [&g}) be another non-
decreasing sequence of nonnegative functiondtn Then by definition,
(h!) also defines the entropy structure if and only if it is unifymquiva-
lent to the reference sequenés,). Thus the entropy structure for a system
(X, f) is a certain uniform equivalence class of sequences of ifumebn
M. The many approaches to defining entropy lead to many caedsea
quencesh,, ), and Downarowicz examined them [28]. With few exceptions,
the approaches yield sequences in the same uniform equbeatdass as
the reference sequence (and most of these sequences dderanly more
simple to define then the reference sequence). A sequerfoemly equiv-
alent to the reference sequence determines all the sanmpgimrariants
(e.g., the topological entropy, the entropy function a#,, h{,, and the

sex

transfinite order of accumulation in Theorem 6.5), by apian of the
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same functional analytic characterizations as apply tveléne invariants
from the reference sequence. Because so many sequencés fkadame
encompassing collection of entropy invariants, it makeseeo refer to the
entire equivalence class of these sequences aantingpy structureof the
system.

Viewing the entropy structure as fundamental, one asksiwdtizictures
can occur. At the level of topological dynamics there is a plate answer,
due to Downarowicz and Serafin.

Theorem 6.6.[29] The following are equivalent.

(1) (g») is a nondecreasing sequence of functions on a metrizable Cho
guet simplex”, beginning withy, = 0 and converging to a bounded
functiong, and withg,, .1 — g, upper semicontinuous for atl.

(2) There is a homeomorphisghof a compact metrizable space, with
entropy structure given by a sequers,), such that there exists
an affine homeomorphism fra ; to C' which takegh,,) to a se-
guence uniformly equivalent {g,,).

Given (g,,) above, Downarowicz and Serafin actually construct a model
f on the Cantor set such that the affine homeomorphism {&kg<o (g, ).
Moreover,f can be made minimal.

More generally one asks what entropy structures are cobieatiith
what degrees of smoothness.

Question 6.7.Let X be a compact Riemannian manifold ahek » < oc.
What entropy structures are possible ot diffeomorphisms oX'?

Precisely, Problem 6.7 asks the following: given) a nondecreasing
sequence of nonnegative upper semicontinuous functiores raptrizable
Choquet simplex’, and converging to a bounded functigrdoes there ex-
istaC" diffeomorphismf on X, with entropy structure given by a sequence
(hn), such that there exists an affine homeomorphism framto C' which
takes(h,,) to a sequence uniformly equivalent(ig,)?

Problem 6.7 is more a program for the decades than one proliéen
move to particular (still very difficult) problems withinighprogram.

First, we isolate the one good distinguished class in th@pwyistructure
theory: this is the Misiurewicz class abymptoticallyh-expansivesystems
[109]. It turns out that X, f) is asymptoticallyh-expansive if and only
if its entropy structure is given by a sequeriég) which converges ta
uniformly [28], if and only if it has a principal symbolic extision in the
sense of Ledrappier (the factor map preserves the entrapyeoy invariant
measure) [14, 12]. Buzzi showed(&* system(X, f) is asymptotically
h-expansivg19].
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Question 6.8. Which asymptotically.-expansive entropy structures occur
for someC* diffeomorphism on some (or a given) compact manifoii

Note that the Newhouse conjecture (Conjecture 7.1) imgkegre con-
straints to realization iX is a surface.

At the 1991 Yale conference for Roy Adler, Boyle presentedl filst
examples of systems with finite entropy but with no symbokteasion
(these were constructed in response to a 1988 question agfukiander).
This provoked a question from A. Katok.

Question 6.9(Katok, 1991) Are there smooth finite entropy examples with
no symbolic extension?

We have seen that there are no l6at examples. For lesser smoothness,
Downarowicz and Newhouse showed that the situation is giifferent.

Theorem 6.10([30]). A generic area-preserving' diffeomorphism of a
surface is either Anosov or has no symbolic extensiom.<fr < oo and
dim(M) > 1 then there are residual subseks of open sets iDiftf" (M)
such thaths(f) > 0—and hencg has no principal symbolic extension—
foreveryf € R.

The first result implies that a generic area-preservifigsurface diffeo-
morphism that is not Anosov is not topologically conjugat@anyC* dif-
feomorphism; this includes all diffeomorphisms on surfagther thari.
The difficult proof of [30] merges the detailed entropy theof symbolic
extensions with genericity arguments for persistent hdmicdangencies.
Concrete examples @¢f” mapsl < r < oo with positive residual entropy,
based on old examples of Misiurewicz [107, 108], are giveflB]. The
most important open problem currently is the following.

Question 6.11.Supposef is aC™ diffeomorphism of a compact Riemann-
ian manifold, withl < r < co. Is it possible forf to have infinite residual
entropy?

The arguments of [30] led Downarowicz and Newhouse to tHevahg
more specific version of this problem.

Question 6.12.Let M be a compact manifold;: M — M a C™ map with
r > 1. Is it necessarily true that

hsel f) < Tuop(f) +

The right-hand side here is effectively an iterated Yomgime defect.
Yomdin proved that the defect in upper semicontinuity gitagriocal vol-
ume growth isdim M log Lip(f)/r. In the contructions one tends to carry

dim M log Lip(f) 0
r—1 '
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out in this field, one iterates the procedure that gives thignate and di-
vides again by each time. The right-hand side above is the sum of the
resulting geometric series. Fore= 1 andr = oo this right-hand side agrees
with the known resultsC'-maps may not have a symbolic extension at all,
andC*> maps have a principal symbolic extension. The questioriasae

to the sense that maps of intermediate regularity should bgmnbolic ex-
tensions, and the entropies of these should not be too mrgsr inan that

of a map and by a margin that is less for maps with higher reigula

7. MEASURES OF MAXIMAL ENTROPY (PRESENTED BYSHELDON
NEWHOUSE)

Conjecture 7.1(Newhouse)Let M be a compact surface and M — M
aC> diffeomorphism with,( f) > 0. Then there are at most finitely many
measures of maximal entropy.

Evidence for this conjecture can be found in many placesnZtéof-
bauer essentially proved the analogous fact for piecewmaobone maps
of the interval.

There are a countable number of homoclinic closures, andrgdidic
measures of sufficiently high entropy are supported on these

The product of an Anosov diffeomorphismBf with the identity on the
circle shows that in higher dimension such a claim can onlgt tvith some
additional hypotheses.

8. PROPERTIES OF THE MEASURETHEORETIC ENTROPY OF
SINAI—-RUELLE—BOWEN MEASURES OF HYPERBOLIC ATTRACTORS
(CONTRIBUTED BY MIAOHUA JIANG)

Let Diff'**( M) be the collection of al>'+*-diffeomorphisms on a com-
pact smooth Riemannian manifald. Assume thata mafy € Diff' (A1)
is transitive and has a hyperbolic attractoms its nonwandering set. By
structural stability, any € Diff'** (M) in a sufficiently smalC-neighborhood
of f, is topologically conjugate tg, on the attractor and its nonwandering
set is also a hyperbolic attractor. We denote this neighdmmitof f, by
U (fo). LetU(f,) be the collection of those diffeomorphismdiff' (1)
that can be connected witfy by a finite chain of such neighborhoodls,,

Ufo)={93IneNVi=1,2,--- ,n3f € Diff **(M), ¢ > 0:
e U (f,) andUS" (fii))NUS (fi) #@fori=1,2,--- ,n.}

€i—1

The setl/( f,) is an open set dbiff' ™ (M). Any mapf in U(f,) possesses
a hyperbolic attractor and there exists an SRB megspfer f. Any two
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maps inU( fy) are conjugate by a Holder continuous map that is not neces-
sarily close to the identity. Each maplif{ f;) also has the same topological
entropy. However, the measure-theoretic entrpy( f) of f € U(fy) with
respect to its SRB measugg can vary. It was shown by David Ruelle that
the dependence gf; on the mapf is differentiable when the maps afé.

Question 8.1.1sinf sy 40y, (f) = 07
Question 8.2.Does this functional have a local minimum?

For expanding maps on the circle, the infimum being zero waBroced
by Mark Pollicott. The problems were raised during convieosa between
Miaohua Jiang and Dmitry Dolgopyat.

9. SNAI-RUELLE—BOWEN MEASURES AND NATURAL MEASURES
(PRESENTED BYMICHAL MISIUREWICZ AND BASSAM FAYAD)

Definition 9.1. Let X be a compact measure-theoretic spgceX — X
a continuous mapM the space of all probability measures ahand
for M= M, (fu())e := p(@ o f), whereu(p) := [y wduforo: X —
R. Given a “reference” measur@ on X for which f.(m) <« m and
Ap(p) = Z;é fk(u)/n, a Sinai-Ruelle-Bowen measure fbis a mea-
surem such that there is an open C X with m(U) > 0 such that
A, (6;) —— my for m-a.e. z € U [135, 136]. Anatural measurés a

measuren for which there is an open sét with m(U) > 0 such that
A, () —— my for everyp € M with p(U) =1 andp < m.

Theorem 9.2. A Sinai—-Ruelle-Bowen measure is natural.

Proof. IntegrateA,, (6,) —— my overz with respect ton. O

The converse does not hold.

Theorem 9.3([110, 111, 71]) If g is an expanding algebraic automor-
phism or an algebraic Anosov automorphism of a tdFdshen there exists
f: T¢ — T that is topologically conjugate tg and such that

(1) f«(m) < m for m = Lebesgue measure
(2) An(m) E’ mpy
(3) ms has maximal entropy

(4) {A.(6,) | n € N} is dense in the space ¢finvariant Borel proba-
bility measures forn-a.e.z € T¢.

This particular situation is impossible for smooth (ev&h f, which
motivates
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Question 9.4.With Lebesgue measure as the reference measure, are there
smooth dynamical systems for which the ergodic natural oreas not a
Sinai—Ruelle-Bowen measure?

There is an example of piecewise continuous, piecewise gniokerval
map for which the natural measure is the average of two dedtasures at
fixed points and an SRB measure does not exist [10, page 391].

One could say that in these examples the conjugacy sendsdiebeea-
sure to one that is completely unrelated to Lebesgue measure

10. BILLIARDS (DOMOKOS SzASZ)

Consider a dispersing billiard on the two-dimensional $omith a finite
horizon {.e.,assume that the length of orbit segments between impadts wit
scatterers is bounded). The Lorentz process iZtheover of this billiard.
(In other words, it is a billiard ofR? with periodically arranged convex
scatterers.) The phase space of the billiard can, of cobesembedded
isomorphically into the phase space of the Lorentz prodessijts cell 0,
say. Assume that the initial phase point of the Lorentz gseeselected in
cell 0 according to the Liouville measure.

It is known that, for the billiard dynamics, correlationstedlder func-
tions decay exponentially fast (cf. [136]). As a conseqeetfior Holder
functions the central limit theorem holds, implying that foe correspond-
ing Lorentz process the typical displacement of orbitseases as the square
root of the number of collisions. However, for periodic &etories of the
billiard the displacement is either bounded or is balligtie., it grows lin-
early with the number of collisions). According to a constran of [16]
(for more details and further references see [132]) therexist ballistic
orbits.

Question 10.1.How large is the set of ballistic orbits? Could one give a
lower bound for its Hausdorff dimension?

This is a geometric question because it is not a matter of/stgdypi-
cal behavior. When one aims at constructing ballistic srditferent from
those arising from periodic ones the problem is that theee“sinadows”
of the scatterers, which makes this situation differentfrgeodesic flows
in negative curvature because it introduces an analog dtiy@survature,
and there is no good geometric picture here.

11. SrABLE ERGODICITY (WITH KEITH BURNS)

Definition 11.1. An embeddingf is said to bepartially hyperbolicon A
if there exists a Riemannian metric for which there are cants positive



PROBLEMS IN DYNAMICAL SYSTEMS 15

functions\;, u;, i = 1,2,3 on M such that
0< A < <Ao< g <Az < puzwith ug <1< A3
and an invariant splitting
T.M = E*(z) ® E°(z) ® E"(z), d,fE(x)=FE"(f(z)), T=s,c,u

into pairwise orthogonal subspacks(z), £¢(x) and E*(x) such that
A S ldof TE (@) < ldaf T E°(2)]] <
Ay < lldof T E“(@) ]| < lldof T E°(2)]| < pra,
A3 S ldof T E*(2)]| < lldof T E*(2)|| < pa.

In this case we set** := E° @ E° andE“* .= E° @ E".

S

E
E

Remark. Each subbundl&™ for 7 = u, s, ¢, cu, cs is Holder continuous.

Denote the set of? partially hyperbolic diffeomorphisms of a com-
pact manifold)d/ by PHD?(M) and the set of volume-preserving such by
PHD‘?/OI(M)'

Conjecture 11.2 (Pugh—Shub) The set of diffeomorphisms that are er-
godic with respect to volume containg’&-dense and”'!-open subset of
PHD?_ (M).

vol

Since the sole method available for establishing ergadfoitm hyper-
bolicity is the Hopf argument, it is natural to considet-paths, that is,
paths obtained by concatenating finitely many segments@&aehich lies
entirely in a stable or an unstable leaf. The property of ¢pgnined by
a us-path is obviously an equivalence relation on points\of If there is
just one equivalence class, in other words if any two poingsj@ned by
a us-path, we say that the diffeomorphism has #oeessibility property
One also wants to consider this property modulo sets of measwhich
leads to theessential accessibility propertyhich says that a measurable
set which is a union of equivalence classes must have zerdl onéasure.

This suggests approaching the above conjecture via the didawing
ones:

Conjecture 11.3.PHD? ;(M) and PHD¥( M) contain subsets consisting of

diffeomorphsims with the accessibility property that an¢haC?-dense and
C'-open.

Conjecture 11.4. Essential accessibility implies ergodicity in PB ).
Pertinent known results are:

Theorem 11.5([26]). Conjecture 11.3 is true i€? dense is weakened to
C'! dense.
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Theorem 11.6([114, 65, 17]) Conjecture 11.3 is true for diffeomorphisms
with 1-dimensional center.

Removing the assumption of 1-dimensional center bundlereguire
substantially new ideas.

Results towards Conjecture 11.4 are the classical ones Ipy [86],
Anosov and Anosov-Sinai [1, 3] as well as those by GraysoghRund
Shub [52, 123], Pugh and Shub [124, 125] and the most refinsibvedue
to Burns and Wilkinson [18].

Definition 11.7. We say thay is center-bunched max{1, A\; '} < Ao/t
This holds automatically whenever the center bundle istedisional.

Theorem 11.8([18]). An (essentially) accessible, center-bunched, partially
hyperbolic diffeomorphism is ergodic (and, in fact, haskhproperty).

With this in mind one can rephrase Conjecture 11.4 as fotlows

Question 11.9.Can one dispense with the center-bunching hypothesis in
Theorem 11.8?

This would require a substantially new insight. The preseabniques
crucially require center bunching, even though it has beeskened signif-
icantly from its earliest formulations.

Maybe a different approach is needed:

Question 11.10.Can one show that accessibility implies ergodicity of the
stable and unstable foliations in the sense that sets stgdrhy stable
leaves and sets saturated by unstable leaves must have ssioeor full
measure?

It is not known whether a diffeomorphism that satisfies thediljeses of
Theorem 11.8 must be Bernoulli.

Question 11.11.Are systems as in Theorem 11.8 Bernoulli?

The answer is expected to be negative, but the known exaropl€s
systems that are not Bernoulli are not of this type. It may &ssible that a
study of early smooth examples by Katok may be instructiveeyTare not
partially hyperbolic but might be sufficiently “soft” to beseful here.

12. MIXING IN ANOSOV FLOWS(MICHAEL FIELD)

Let A be a basic set for the Axiom A flos# andP denote the periodic
spectrum ofp | A (set of prime periods of periodic orbits). Bowen showed
thatP is an invariant of mixing. The analyticity and extensiongedies of
the ¢-function (s of ® are (obviously) determined By (for the definition
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of (4 we assume the measure of maximal entropyAQn In view of the
close relation between exponential mixingdond extension properties of
(o [122], we ask

Question 12.1.1s the periodic spectrum an invariant of exponential mix-
ing?
(For conditions orP related to rapid mixing, see [41, Theorem 1.7].)
Let = be a homoclinic point for the periodic ortit In [41] a definition
is given of ‘good asymptotics’ for the p&il’, z). Without going into detail,
the definition involves precise asymptotic estimates foeguence of peri-
odic orbits which converge to the-orbit of z. Typically, good asymptotics
is an open condition in thé€-topology. If there exist$I', ) with good
asymptotics the® is (rapidly) mixing [41].

Definition 12.2. We say® hasvery good asymptotid$ every pair (T, x)
has good asymptotics in the sense of [41].

This is a generic condition on Axiom A flows.
Question 12.3.Does very good asymptotics imply exponential mixing?
A weaker (but perhaps more tractable) version of this qoe$si

Question 12.4.Does very good asymptotics imply analytic extension of the
¢-function?

A flow @ is C"-stably mixing if there exists &"-open neighbourhood
of & consisting of mixing flows. It was shown in [41] that/if> 2 then a
CT-Axiom A flow can beC"-approximated by &2-stably mixing Axiom
A flow (in fact, by aC?-stably rapid mixing flow). If the flow is Anosov or
an attractor one may approximate by'astably mixing flow.

Question 12.5.If the dimension of the basic set is at least two, can one
always approximate by @!-stably mixing flow?

(This is really a question about the local geometry of thedosest. For
example, it suffices to know th&**(x) N A is locally path connected for
all x € A. This condition is automatically satisfied for attractprs.

For results and background related to the following questee [40].

Problem 12.6. Suppose the dimension of the basic set is one (suspension of
a subshift of finite type). Show thatifis C'!-stably mixing, them® cannot
beC”,r > 1.

Of course, it is interesting here to find examples whgte*-stable mix-
ing of ® implies that® cannot be more regular than+.

Although the results in [41] show that every Anosov flow carapprox-
imated by aC*-stably mixing Anosov flow, there remains the
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Conjecture 12.7. (Plante [121]) For transitive Anosov flows, mixing is
equivalent to stable mixing.

As Plante showed, the conjecture amounts to showing thheistrong
foliations are integrable then they cannot have dense ¢eave

13. THE STRUCTURE OF HYPERBOLIC SET§CONTRIBUTED BY TODD
FISHER)

As stated in Section 16 below, there are a number of fundaahgues-
tions about the structure of Anosov diffeomorphisms. Ihet not surpris-
ing that there are a number of problems concerning the streicf general
hyperbolic sets.

A question posed by Bonatti concerns the topology of hyderladtrac-
tors.

On surfaces a hyperbolic attractor can be either the entrefoid (Anosov
case) or a 1-dimensional lamination (“Plykin attractors”)

On 3-dimensional manifolds there are many kinds of hypéctaitrac-
tors: Let A be a hyperbolic attractor of a diffeomorphisfron a compact
3-manifold M. The following cases are known to exist.

(1) If the unstable manifold of the poinisc A are bidimensional, then
A is either the toru§™ (Anosov case), or a bidimensional lamina-
tion.

(2) If the unstable manifolds of the poinise A are 1-dimensional,
then the attractor can be

(a) a 1l-dimensional lamination which is transversely Caffiilliams
attractors”) or

(b) an invariant topological 2-torug?, and the restriction of to
this torus is conjugate to an Anosov diffeomorphism (howeve
the torusT? can be fractal with Hausdorff dimension strictly
bigger than 2).

Question 13.1.1s there some other possibility? For example, is it possi-
ble to get an attractor such that the transversal structuréhe unstable
lamination is a Sierpinsky carpet?

In [42] the following is shown.
Theorem 13.2.1f M is a compact surface and is a nontrivial mixing
hyperbolic attractor for a diffeomorphisthof M, and A is hyperbolic for

a diffeomorphisny of M, thenA is either a nontrivial mixing hyperbolic
attractor or a nontrivial mixing hyperbolic repeller fay.

Additionally, it is shown in [42] by counterexample that thieove does
not hold in higher dimensions for general attractors. Havel we add
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some assumptions on the attractor or weaken the conclusomawe the
following problems.

Question 13.3.SupposeV/ is a compact smooth boundaryless manifold of
dimension» and A is a mixing hyperbolic attractor fof with dim(E*) =

n — 1 and hyperbolic for a diffeomorphisgn Does this imply that\ is a
mixing hyperbolic attractor or repeller fog?

Question 13.4.Suppose\ is a locally maximal hyperbolic set for a diffeo-
morphismf and hyperbolic for a diffeomorphisgn Does this imply that

A is locally maximal forg? or that A is contained in a locally maximal

hyperbolic set fogy?

Related to Problem 13.4 we note that in [43] it is shown thamnmani-
fold, of dimension greater than one, there is an open setfebanorphisms
containing a hyperbolic set that is not contained in a lgcaléximal one.
Furthermore, itis shown if the dimension of the manifoldtirast four that
there is an open set of diffeomorphisms containing a tranedityperbolic
set that is not contained in a locally maximal one.

Question 13.5.Supposel/ is a compact surface antl ¢ M is a transi-
tive hyperolic set for a diffemorphisghof M. If A is transitive, then is\
contained in a locally maximal hyperbolic set?

Inspired by Hilbert’'s famous address in 1900, Arnold re¢e@sarious
mathematicians to provide great problems for2h& century. Smale gave
his listin [130]. Smale’s ProbleriR deals with the centralizer of a “typical”
diffeomorphism. Forf € Diff"(M) (the set ofC” diffeomorphisms from
M to M) the centralizer off is

C(f) ={g e Difi"(M) | fg=gf}-
Letr > 1, M be a smooth, connected, compact, boundaryless manifold,
and

T ={f e Diff"(M) | C(f) is trivial}.
Smale asks whethdr is dense iDiff"(M). Smale also asks if there is a
subset off" that is open and dense iff"(A/). Smale states: “I find this
problem interesting in that it gives some focus in the dagémebeyond
hyperbolicity where even the problems are hard to poselgledr30]

Even though Smale states that the problem of studying theatzer
gives focus on nonhyperbolic behavior, unfortunately elenhyperbolic
case, in general, remains open. However, a number of peapte gartial
results to Smale’s question for Axiom A diffeomorphisms.

Palis and Yoccoz [115] have shown that there is an open arsedst of
C*> Axiom A diffeomorphisms with the strong transversality peoty and
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containing a periodic sink that have a trivial centraliZEsgawa [133] has
shown that on any manifold there iS4 residual set amon@! Axiom A
diffeomorphisms with a trivial centralizer.

Question 13.6.For any manifold and any > 1 is there an open and dense
setU contained in the set af” Axiom A diffeomorphisms such that any
f € U has a trivial centralizer.

14. THE DYNAMICS OF GEODESIC FLOWS PRESENTED BYGERHARD
KNIEPER)

Conjecture 14.1. For any compact manifold the geodesic flow of a generic
Riemannian metric has positive topological entropy.

This holds for surfaces. Specifically, for tori this is acld using meth-
ods of Hedlund, Birkhoff and others to construct a horsestwoe for higher
genus this is a consequence of the exponential growth fdygezhtropy.
Consequently only the sphere requires substantial work. th& sphere
Contreras and Paternain [21] showed this in@Hetopology (for metrics)
using dominated splitting and Knieper and Weiss [92] prateslin theC'>
topology using global Poincaré sections (pushed from thk-kmown case
of positive curvature using work of Hofer and Wysocki in syieggic topol-
ogy) and the theory of prime ends as applied by Mather. A aqnsece
(via a theorem of Katok) is that generically there is a hdisesand hence
exponential growth of closed geodesics.

Question 14.2.Can one make similar statements for Liouville entropy?

Question 14.3.Is there a metric of positive curvature whose geodesic flow
has positive Liouville entropy?

The underlying question is whether there is a mechanisnhtogénera-
tion of much hyperbolicity from positive curvature.

If a manifold of nonpositive curvature has rankik(, every geodesic is
hyperbolic), then the unit tangent bundle splits into twts $leat are invari-
ant under the geodesic flow, the regular set, which is operdande, and
the singular set.

Question 14.4.Does the singular set have zero Liouville measure?

An affirmative answer would imply ergodicity of the geodefbowv. For
analytic metrics on surfaces the singular set is a finite b closed
geodesics. There are examples where the singular setscposdive topo-
logical entropy.

Irreducible nonpositively curved manifolds of higher raale locally
symmetric spaces by the rank rigidity theorem. In this céssed geodesics
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are equidistributed. Far > 0 let P.(M) be a maximal set of-separated
closed geodesics anBl(t) := {¢ € P.(M) | ¢(c) < t}. By a result of
Spatzier there is an> 0 such thatim,_,..(1/t) log card P.(t) = hiop(¢").
This implies that closed geodesics are equidistributeti vaspect to the
measure of maximal entropy.

Question 14.5.Can one replace é-separated” by “nonhomotopic”?

This is likely but unknown.

15. AVERAGING (Y URI KIFER)

The basic idea in averaging is to start from an “ideal” (utyrdred) sys-
tem

dX(t)
= 0, X(0)=0
dY (t)
dt
that gives rise to the flow) : R x M — R x M, (z,y) — (z, Fi(y)). In-
tegrable Hamiltonian systems are of this type. One thempesthe system
by adding a slow motion in the first coordinate:

— bz, Y (1)), Y(0) =y

AXUW) _ pixe(), v, X(0) = 2
T — ), ve), V<) =y

We write X = X7 andY* =Y . Thisresults in a flow

pe(a,y) = (X7, (1), Yz, (1),

with X representing the slow motion. The question is whether oma ti
scale oft/e the slow motion can be approximated by solving the averaged
equation wheres is replaced byB which is obtained from the former by
averaging it along the fast motion (see [89] and [90]).

(15.1) % = B(X(t))

In discrete time the “ideal” unperturbed system is of therfor

SOO('Ta y) = (JI, Fx(y))
with z € R?, F,: M — M. The perturbed system is

pe(z,y) = (z + eV (2,y), Fr(y)),
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and we can bring this into a form analogous to the one for nantis time
by writing it as difference equations:

Xé(n+1) = X(n) + e¥(X(n),Y(n))
Yén+1) = Fxem)(Y(n))

It is natural to rescale time tg'¢, and a basic averaging result (Artstein and
Vigodner [4]) is that (in a sense of differential inclusian)y limit point of

{X(t/e) | e> 0, t €[0,T]}

Is a solution of

dZ°(t)

dt

with Z°(0) = z, wherey, is F,-invariant andB,(z) := [ B(x,y) du(y).
Heuristically one instead uses the following averagingg@ple. Suppose
the limit B(x) := lim, .. Jy B(x, F:(y)) ds/t exists for “most’(z, y) and
“almost” does not depend o;m Then try to approximate& “(¢) in some
sense over time intervals of ordefe by the averaged motioX given by
(15.1) with X<(0) = x. (This goes back to Clairaut, Lagrange, Laplace,
Fatou, Krylov—Bogolyubov, Anosov, Arnold, Neishtadt, Kigs and oth-
ers, and there are also stochastic versions.) One then Wkealtb know
whether

= B,.(2°(t))

sup | X“(t) — X“(t)] — 0,
0<t<T/e €—0
and in which sense this happens. Next one can inquire abeugrtior
Xe(t) — X<(¢).

New results assume that the fast motion is chaotic, typi¢h# second
factor is assumed to be hyperbolic. One can then hope fooappation
in measure, and there are theorems to that effect in 3 magscase fast
motion is independent of the slow one (this is the easy caskpae gets
a.e.-convergence), when the fast motion preserves a smuedbure that
is ergodic for a.e.x (this is due to Anosov and covers the Hamiltonian
situation), and much more recently, when the fast motiomig\gom-A
flow (depending”? on z as a parameter) in a neighborhood of an attractor
endowed with Sinai—Ruelle—Bowen measure.

One may in the latter case ask whether there is a.e.-comaggather
than in measure. For instance, this is not true in generahencase of
perturbations of integrable Hamiltonian systems. In thietacase we may
have no convergence for any fixed initial condition from aéappen set
(see Neishtadt's example in [90]). This is related to thestjoa of whether
there are resonances and whether these affect convergeddsowa. To
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make this concrete, consider the discrete-time system
X(n+1)=X(n)+ esin2rY(n)
Y¢(n+1)=2Yn)+ X(n) (mod1).
Question 15.1.1s
lim sup |X(n)—X(0)]=0

=0 0<n<T/e
for Lebesgue-almost evefty, y)?

It is known by a large-deviations argument (see [90]) thaegp > 0
the measure of the set 0f, y) for whichsup,,<7/. [X(n) — X(0)[ > ¢
is at moste—%/¢ for someC' > 0.

When one considers the rescaled averaged matioh= X<(t/¢) (aver-
aged with respect to Sinai—Ruelle—Bowen measuregdiabatic invariant
is an invariant functioni,e.,a functionH such that (Z(t)) = H(Z(0)).

Conjecture 15.2.0n (M, vol), H(X¢(t/€*)) converges weakly to a diffu-
sion, assuming that the fast motion is hyperbolic.

It may be simpler to start with expanding fast motions.

Question 15.3.Does this framework apply to give results at high energies
for geodesic flows in negative curvature with an added pa@ikht

16. QLASSIFYING ANOSOV DIFFEOMORPHISMS AND ACTIONS
(PRESENTED BYANATOLE KATOK AND RALF SPATZIER)

The classical question on which these questions are basdgktber one
can classify all Anosov diffeomorphisms. This has been dgnéo topo-
logical conjugacy on tori and nilmanifolds and for codimiensl Anosov
diffeomorphisms [48, 102, 113]. The central ingredientis fundamental
observation by Franks that if an Anosov diffeomorphism oarag acts on
the fundamental group in the same way as a hyperbolic aufghisrn then
there is a conjugacy. Manning proved that any Anosov mapefdtus is
indeed of this type and extended the result to nilmanifolds.

Question 16.1.1s every Anosov diffeomorphism of a compact maniidld
topologically conjugate to a finite factor of an automorphisf a nilmani-
fold N/T'?

If there are indeed other examples, then there is curremdigkeof imagi-
nation regarding the possibilities for Anosov diffeomasphs. In the frame-
work of the proofs mentioned above the central assumptitimeisthe uni-
versal cover iR™ and the map is globally a product, but there is no a priori
reason that this should be so. Indeed, for Anosov flows thatsin is quite
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different, and there are many unconventional examplesesfehbeginning
with one due to Franks and Williams that is not transitive [49

In higher rank there are plausible mechanisms to rule oudlogycally
exotic discrete Anosov actions.

Perturbation of periodic points shows that one cannot expetter than
topological classification of Anosov diffeomorphisms, ardexample by
Farrell and Jones suggest a different reason: There is asoArthffeomor-
phism on an exotic torus.

One may ask about characterizations of algebraic Anosaeeractp to
C'* conjugacy.

Theorem 16.2([8]). An Anosov diffeomorphism witt™ Anosov splitting
that preserves an affine connectiend.,is symplectic) i<'>° conjugate to
an algebraic one.

Conjecture 16.3. Instead of preservation of an affine connection this can
be done assuming preservation of some sensible higher-getmetric
structure,e.g.,a Gromov-rigid structure.

Question 16.4.Does preservation of an affine connection alone suffice?
Question 16.5.Does smooth splitting alone suffice?

This might be possible. A natural approach would be to constnvari-
ant structures on the stable and unstable foliations aralthese together
to a global invariant structure. The problem is that in sorhe standard
nilpotent examples the natural structure is not of the typegets this way.

A different and more recent result is the following:

Theorem 16.6([76, 32]). A uniformly quasiconformal Anosov diffeomor-
phism isC'* conjugate to an algebraic one.

Conjecture 16.7 (Katok). An Anosov diffeomorphism whose measure of
maximal entropy is smooth is smoothly conjugate to an akgelime.

Anosov flows are much more flexible, there are many exampétsithke
a classification seem unlikely [49, 59]. There are some dbaraations of
algebraic flows. These provide some results similar to tloe@kas well as
analogous problems.

The situation is rather different for algebraic actionsswglas they are ir-
reducible €.g.,not products of Ansov diffeomorphisms). These actions are
usually hard to perturb. Katok and Spatzier showed that agtibns with
semisimple linear part are rigid [85], and Damjanovic anddkgpushed
this to partially hyperbolic actions on tori [23].

Conjecture 16.8. Any C>* AnosovR*- (or Z*-) action fork > 2 on a
compact manifold without rank 1 factors is algebraic.
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No counterexamples are known even with lower regularity ther.
A pertinent result by Federico Rodriguez Hertz is that

Theorem 16.9([64]). A Z? action onT? with at least one Anosov element
and whose induced action on homology has only real eigeagglone less
than 1 and 2 bigger than 1) i§°° conjugate to an algebraic one.

In fact, more generally, lef be a subgroup of GLV, Z), the group of
N x N matrices with integer entries and determinarit and say that the
standard action of on TV is globally rigid if any Anosov action of on
TV which induces the standard action in homology is smoothhjummate
to it.

Theorem 16.10([64]). Let A € GL(N, Z), be a matrix whose characteris-
tic polynomial is irreducible oveZ.. Assume also that the centralizg( A)

of A in GL(N,Z) has rank at leasR. Then the associated action of any
finite index subgroup of (4) on TV is globally rigid.

The assumption on the rank of the centralizer is hardlyictste. Due
to the Dirichlet unit theorem, in the above cagg&A) is a finite extension
of Z"+<=1 wherer is the number of real eigenvalues anis the number of
pairs of complex eigenvalues. So} 2¢c = N, andZ(A) has rankl only if
N =2orif N =3 andA has a complex eigenvalue oriif = 4 and A has
only complex eigenvalues.

In [64] Hertz also states:

Question 16.11.ConsiderN > 3, A € GL(V,Z) such thatZ(A) is “big
enough”. Under which assumptions is the standard actionvef finite-
index subgrouf on T globally rigid?

Another rigidity result is due to Kalinin and Spatzier

Theorem 16.1[77]). If M is a compact manifold with a CartaR-action
such thatk > 3, there is a dense set of Anosov elements and every 1-
parameter subgroup is topologically transitive (hencer¢h@e no rank-1
factors) then this action i€ conjugate to an algebraic one, indeed a
homogeneous oné.€., the left action ofR* embedded in a group’ on

G/T" for a cocompact discrete subgrou.

(Homogeneous Anosov actions of this type are not classigeduse it
is not known how to classify suspensions of Anogbvactions on nilman-
ifolds.)

Question 16.13.Does the Kalinin—Spatzier result hold fbr= 2?

Question 16.14.Does the Kalinin—Spatzier result hold assuming only the
existence of an Anosov element?
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Question 16.15.Does the Kalinin—Spatzier result hold without the transi-
tivity assumption (and maybe even without excluding raféefors)?

17. INVARIANT MEASURES FOR HYPERBOLIC ACTIONS OF
HIGHER-RANK ABELIAN GROUPS (ANATOLE KATOK)

The basic example is Furstenbergs? x 3”-example of theN-action
on S! generated by, : x — iz (mod 1) fori = 1, 2. For a single of these
transformations there are plenty of invariant measuresoby £; | i € N}
the only jointly invariant measures are easily seen to beekgbe measure
and the Dirac mass at 0. The same holds if one takes a polyhétfia
with integer coefficients and consid€rBp(,y | n € N}. Furstenberg asked
whether Lebesgue measure is the only nonatomic invariarel poobabil-
ity measure fort; and Es.

The second example & = SL(n,R)/T" for n > 3 and a latticel® C
SL(n,R). The Weyl chamber flofWCF) is the action of the seb of
positive diagonal elements o by left translation. D is isomorphic to
Rn—l)_

Problem 17.1. Find all invariant measures for these two examples.

Rudolph [127] showed in 1990 that a measure invariant undér b,
and E; for which one ofFE, and E5; has positive entropy is Lebesgue mea-
sure. Geometric methods which form the basis of most of thexwp to
now were introduced in [87]. In 2003 Einsiedler, Katok anddenstrauss
[31] proved the analogous result for the Weyl chamber flosyasng pos-
itive entropy for one element of the action). See[100] fouavsy of the
this rapidly developing subject at a recent (but not presiate.

Fundamentally the issues for the case of positive entropyesarsonably
well understood although (possibly formidable) technpgralblems remain.
However, even simple questions remain in the general casge 14 an
example.

Question 17.2.Given an Anosov diffeomorphism and a generic ergodic
invariant measureife., neither Lebesgue measure nor an atomic one), is
there a diffeomorphism that preserves this measure andgimett a power

of the Anosov diffeomorphism itself?

Indeed, the zero-entropy case is entirely open, and exgiies on the
expected outcome. One can take a geometric or Fouriertamapproach.
The difficulty with the latter one is that even though one hastaral dual
available, measures don’t behave well with respect to pgdsi the dual.
Atthe level of invariant distributions there is little daéffence between rank 1
and higher rank whereas the wealth of invariant measurests different
between these two situations. The geometric approach peddhe results
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for positive entropy, but in the zero-entropy situation ditional measures
on stable and unstable leaves are atomic.

Thus, we either lack the imagination to come up with novehirant
measures or the structure to rule these out.

As to the reason for concentrating on abelian actions, timglg provides
the first test case for understandimgperbolicactions in this respect. Re-
cently, substantial progress was achieved beyond theraligedr uniformly
hyperbolic cases [75, 84]. The paradigm here is that peséntropy hyper-
bolic invariant measures are forced to be absolutely coatis if the rank
of the action is sufficiently higre.g.,for Z* actions onk + 1-dimensional
manifolds fork > 2.

For unipotentactions, by contrast, the Ratner rigidity theory is fairly
comprehensive, but here the paradigm is in essence unigoeieity, which
is quite different from the hyperbolic situation.

18. RGIDITY OF HIGHER-RANK ABELIAN ACTIONS (PRESENTED BY
DANIJELA DAMJANOVIC)

Consider actions oft = Z* or A = R* on a compact manifold, where
k > 2. One class of these a#-actions oriT" by toral automorphisms; we
say that these agenuinely of higher rank there is a subgroup isomorphic
to Z? that acts by ergodic automorphisms. Another class cortbistsction
by the diagonad = R"~! on M = SL(n,R)/T, or actions by a generic
hyperplaneR? for 2 < d < n — 1. This is a partially hyperbolic action
whose neutral direction is the neutral direction for thé @drtan. For the
first of these cases Katok and Damjanovic have proved ngl[@#4], and
this raises the following

Question 18.1.Can the KAM-methods of Damjanovic and Katok be used
to establish rigidity in actions of the second type?

The second situation provides much more geometric strei¢chan the
first one, and this can be put to use. Methods of Katok and &p486]
apply to the study of perturbations in the neutral directeach of which is
given by a cocycle over the perturbed action. Therefore éingesobjective
can be achieved by answering

Question 18.2.Can one show cocycle rigidity for the perturbed actions?

Katok and Kononenko [83] have established Holder cocydbibty for
partially hyperbolic diffeomorphisms with the accessibiproperty that
could be put to use here. Progress has been achieved reloeifitist intro-
ducing a new method for proving cocycle rigidity [23] whickas results
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and methods from algebraic K-theory and then developirgrttathod fur-
ther so that it applies to cocycle over perturbations andg@&enoduces local
rigidity for the actions of the second kind [25]

19. LOCAL RIGIDITY OF ACTIONS (PRESENTED BYDAVID FISHER)

For more background, references, more information on thestipns
raised in this section as well as other interesting questionhis area, the
reader should refer to the survey by Fisher in this volume.

Definition 19.1. A homomorphismi: I' — D from a finitely generated
groupI to a topological group is said to bdocally rigid if any i’ suffi-
ciently close tai in the compact-open topology is conjugate toy a small
element ofD.

This is the case for the inclusion of an irreducible cocomfsttice in a
semisimple Lie group with no compact or 3-dimensional fex{@alabi—
Vesentini, Selberg, Weil).

A basic question posed by Zimmer around 1985 is whether oneloca
anything of interest if the topological group is the diffeormhism group
of a compact manifold and is a lattice in a groug~ that has no rank-1
factors (for exampleG = SL(n,R), G = SL(n,Z) for n > 3). (Katok
and collabarators have studi€d= Z< for d > 2 with this in view.) Ben-
veniste showed that every isometric action of a cocompaxtmis locally
rigid in Diff > (M), and shortly thereafter Margulis and Fisher showed that
any isometric action of a group is locally rigid if the group has proprty
(T) of Kazhdan,i.e., H*(I', ) = 0 for every unitary representatian In
2004 Fisher proved that one only neéd® be finitely presented witi/ (T,
Vect®(M)) = 0. This applies, for example, 6 = SL(2, Z+/2) or, more
generally, any irreducible lattice in a semisimple Lie grouthout compact
factors and oR-rank at least 2. Another application are some actions (with
or without nontrivial centralizer) of some cocompact lzgs in SU1,n).

Atheorem of Kazhdan asserts that there are cocompacettis U (1, n)
that admit nontrivial homomorphisms# and as an easy consequence any
action of these with connected centralizer has deformstidimese defor-
mations are not very interesting, so one can ask.

Question 19.2.Are these the only deformations?

There are cocompact lattices in 80n) with embeddings in S@. + 1),
where the resulting actions @f" has an infinite-dimensional deformation
space. The known deformations do not preserve volume:

Question 19.3.Are there volume-preserving deformations in this situzkio
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If T is an irreducible lattice in a semisimple Lie grogpthat has no
compact factors and is contained in a Lie grdiipvith a cocompact lattice
A thenI' acts onH/A. In many cases these actions are not locally rigid,
such as for lattices in SU, n) and in SA1, n).

Conjecture 19.4. An action of a latticd" is locally rigid if there is a map
from G onto a groupG; that is locally isomorphic to either SO, n) or
SU(1,n) and acts on a spac in such a way that there is a factorization
of HA to X that intertwines the actions df on H/A and X (the latter
induced by’ C G;.

This is even open for Anosov actions. A simple linear exanaplinese
would be the natural action of $2, Z+/2) on T* obtained by the linear ac-
tion onR* of the 2 Galois-conjugate embeddings, which have an invaria
lattice. In the case of Anosov actions this should be an agbrable ques-
tion. Crossing the preceding example with the identity on@decshould be
much harder.

20. SMOOTH AND GEOMETRIC RIGIDITY

Conjecture 20.1. A compact negatively curved Riemannian manifold with
C1+zyamundhgrospheric foliations is locally symmetric.

It is believed that smooth rigidity of systems with smoothanant folia-
tions should hold with low regularity. Yet this remains aregpssue. There
is some evidence that this is a hard question. For exampiestigations of
the Anosov obstruction t@ foliations [61] made clear that its vanishing
does not have immediate helpful consequences. And the basistrap
[60] does not start at*.

The invariant subbundles® and E#, called theunstableandstablebun-
dles, are alway#iolder continuous For E* this means that there exist
0 < a < landC,§ > 0 such thatdg(E"(p), E*(q)) < Cdu(p,q)*
wheneverd,,(p,q) < J, whereds is an appropriate metric on subbun-
dles of TM. We say thatE" is C* or a-HOolder; in casex = 1 we say
E* is CYP or Lipschitz continuous A continuous functionf: U — R
on an open set/ C R is said to beZygmund-regulaif there isK > 0
such that|f(z + h) + f(x — h) — 2f(z)] < K|h| for all z € U and
sufficiently smallh. To specify a value of’ we may refer to a func-
tion as beingK-Zygmund. The function is said to béttle Zygmund”
if |f(z+h)+ f(x—h)—2f(z)] = o(|h]). Zygmund regularity implies
modulus of continuityO(|x log |z||) and hencdd-Holder continuity for all
H < 1[139, Theorem (31)]. It follows from Lipschitz continuity and
hence from differentiability. Being “little Zygmund” imm@s having mod-
ulus of continuityo(|xlog |z||). Forr € N denote byC™* the space of
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maps whoseth derivatives have modulus of continuity Forr > 0 let
O — Olr,0@" ")

For the dependence of the leaves on the base point sevgtdlystliffer-
ent definitions are possible. The canonical definition ighé@highest pos-
sible regularity of lamination charts. One may also look itite transverse
regularity of k-jets. Alternatively, one can examine the holonomy semi-
group, i.e., for pairs of nearby smooth transversals to the laminatiom on
considers the locally defined map between them that is iy “fol-
lowing the leaves”. By transversality this is well-defineohd for smooth
transversals one can discuss the regularity of these mdypsh wirns out
to be largely independent of the transversals chosen. Wat #tis notion
here and refer to it as the regularity of holonomies or (vanse) regularity
of the lamination. There is little difference between thdsgnitions in our
context. Following the discussion in [126] we can summatieerelation
as follows:

Theorem 20.2([126, Theorem 6.1])If r € RU {0}, 7 ¢ N~ {1} thena
foliation with uniformlyC" leaves and holonomies ha¥ foliation charts.

However, ifr € N\ {1} then a foliation with uniformlyC" leaves and
holonomies need not have foliation charts. The problem are mixed par-
tials. Without assuming uniform regularity the above stegats can fail
drastically: There is a foliation with uniformig > leaves and with (nonuni-
formly) C> holonomies that does not havea foliation chart [126, Fig-
ure 9]. In our context the regularity is always uniform, se #bove result
implies that one can define regularity equally well via haomes or folia-
tion charts. The essential ingredient for Theorem 20.2 is

Theorem 20.3([74]). Let M be aC* manifold, F*, F'* continuous trans-
verse foliations with uniformly smooth leavese Ny, a > 0, f: M — R
uniformlyC"** on leaves of™ and F*. Thenf is C"**.

This leads to the following observation.

Theorem 20.4.1f r € RU {oo}, r ¢ N~ {1} and the stable and unsta-
ble foliations have uniformlg™ holonomies, then there aré” bifoliation
chartsi.e.,charts that straighten both foliations simultaneously.

Proof. By hypothesis every poing has a neighborhoo& on which the
inverse[x,y] — (z,y) € W¥(p) x W?(p) of the local product structure
map is uniformlyC'" in either entry. By Theorem 20.3 it 5". OJ

There is a connection between the regularity of the sublesrathd that
of the lamination: For any € N U {oc} anda € [0,1) or “a = Lip” a
foliation tangent to aC"** subbundle is itsel”** [126, Table 1]. (The
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reverse implication holds only far = co because leaves tangent ta’a
subbundle ar€"+1.)

The invariant subbundles are always Holder continuousshdtuld be
noted, however, that far < 1 the a-Holder condition on subbundles does
not imply any regularity of the foliations. Indeed, withaut.ipschitz con-
dition even a one-dimensional subbundle may not be uniguédgrable,
so already continuity of the foliation cannot be obtained thay. On the
other hand, there turns out to be a converse connection:

Theorem 20.5([63]). If the holonomies are-Hodlder and individual leaves
are C'* then the subbundles areHolder for everys < a.

There are variants of this for leaves of finite smoothness anubst-
everywhere Holder conditions. Furthermore, wheneverchiny-type in-
formation gives a particular degree of regularity for thémundles, one
can usually get the same regularity for the holonomies, arelwersa.

Conjecture 20.6. If both invariant foliations of an Anosov system &ré
then they are botla>.

Bolder variants of this would replagg?® by C'+tp OBV (1+2zygmund
(“little Zygmund”) or C+e(=llee=)) "put theC? version would be spectacular
enough, even in the symplectic case.

Note that such rigidity results can only be expected assgimigh regu-
larity of both foliations simultaneously because [62] giwesufficient con-
dition for one foliation to beC? that holds for an open set of dynamical
systems.

To prove such results it may be necessary to restrict to tengtric
context, where there are extra ingredients that might h€he leaves are
spheres, and they are “tied together” by the sphere at yfiildiéal bound-
ary) of the universal cover. An important result by Hamads{58] should
help substantially as well:

Theorem 20.7.1f the horospheric foliations ar€’? then the topological
and Liouville entropies of the geodesic flow coincide.

If the Katok entropy conjecture were known this would finikle prob-
lem.

Thus, the following problem remains: By exploiting geoneinforma-
tion show that if the horospheric foliations af& and the topological and
Liouville entropies of the geodesic flow coincide then thedspheric foli-
ations areC'> (or C* for sufficiently largek to invoke the bootstrap [60]).
This leads to a geometric counterpart of Conjecture 20.6.

Conjecture 20.8. A compact negatively curved Riemannian manifold with
C? horospheric foliations is locally symmetric.
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By [7, 9] this follows from Conjecture 20.6. A related propbis the fol-
lowing: Give an alternate proof of the Hamenstadt resulsbygwing that
if the horospheric foliations ar€? then the Jacobian cocycle is cohomolo-
gous to a constant (which implies coincidence of Bowen—Miggneasure
and Liouville measurei.e., coincidence of topological and Liouville en-
tropy). The reason that this route is interesting to expiethat it provides
a motivation to return to the Anosov cocycle and investigdtether it is at
all connected with the Jacobian cocycle in subtle ways.

As noted above, smoothness of invariant structures asedaiath a hy-
perbolic dynamical system is necessary for smooth conjugmaan alge-
braic model. There are several important instances whete cnditions
are sufficient.

Smoothness of the invariant foliations of a hyperbolic dyieal system
has turned out to be sufficient for smooth conjugacy to anbaige model
in the symplectic case. For geodesic flows even more can be €gen
questions concern the precise amount of smoothness nerdqubsasible
conclusions in the absence of symplecticity.

a. Smoothness of the invariant foliations. The most basic result in this
direction is implicit: The proof by Avez [5] that an area-peeving Anosov
diffeomorphism ofl? is topologically conjugate to an automorphism actu-
ally gives a conjugacy as smooth as the invariant foliatidriee definitive
result in this setting is worth giving here, because it isgasggive of the
work yet to be done in higher dimension.

Theorem 20.9([68]). Let f be aC> area-preserving Anosov diffeomor-
phism of T2. Then the invariant subbundles are differentiable andrthei
first derivatives satisfy the Zygmund condit[@B9, Section 1.3, (8L)] and
hence have modulus of continui@(z| log x|) [139, Theorem (3)]. There

is a cocycle, the Anosov cocycle, which is a coboundary ifaaryif these
derivatives have modulus of continuityz| log z|) or, equivalently, satisfy a
“little Zygmund” condition. In this case, or if the derivats have bounded
variation[54], the invariant foliations are&’> and f is C'*° conjugate to an
automorphism.

Note the sharp divide between the general and the smoothity sit-
uation. Indeed, the constant definioz|log z|) is nonzero a.e. except
when the Anosov cocycle is trivial. Therefore this is the sinpossible
dichotomy.

To obtainC* foliations it is actually shown first that triviality of the
Anosov cocycle implie§’® subbundles, and a separate argument then yields
C* foliations.
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Following Guysinsky one can explain the Anosov cocycle gdotal
normal forms. For a smooth area-preserving Anosov diffepmem on
T? deLatte [94] showed that one can find local smooth coordisggtems
around each point that depend continuously (actugHlyon the point and
bring the diffeomorphisnf into theMoser normal fornj112]

fla.y) = (Aglw/%(fﬂy)) 7

Apypp(Ty)

where(z, y) are in local coordinates around a pojnand the expression
on the right is in coordinates arourfdp). The terms involvingpy, that
depend on the produeaty correspond to the natural resonarz)g;,e\;1 =1
that arises from area-preservation (actually from the fawfi resonances
Ap = ATIAS™). The functiony, is as smooth ag, andy,(0) = 1. Now
we suppress the (continuous) dependenck afidy on p. Note that for a
point (0, y) we have

Df:(A‘lxy(l/w)’(wy)+A‘1/<ﬂ(xy) A1z (1)) (zy) >:< Al 0).

Ay (zy) Azye' (zy) + Ap(zy) Ay2e'(0) A

In these local coordinates the unstable direction at a g0int) on the sta-
ble leaf ofp is spanned by a vectot, a(y)). Since this subbundle is invari-
ant underD f and sincef (0, y) = (0, \y), the coordinate representation of
Df from above givea(\y) = Ay%¢'(0) + Ma(y). If the unstable subbun-
dle is C? then differentating this relation twice with respectitat 0 gives
A2a"(0) = 2220/ (0) + X%a”(0), i.e.,¢’(0) = 0. This means that the Anosov
obstruction isy’(0), wherey arises from the nonstationary Moser-delLatte
normal form. (Thus this is also the obstructioné linearization.)

Hurder and Katok verify thatl(p) := ¢/ (0) is a cocycle and show that
it is nonzero a.e. unless it is null-cohomologous. (Guysitssresult that
C1HBV = C follows because bounded variation implies differentiapil
almost everywhere.)

The work by Hurder and Katok is actually carried out for thealwsub-
bundles of volume-preserving Anosov flows on three-mad#ol In this
situation analogous issues arise relative to the stronguswudles. These
can be worked out with closely related techniques:

Theorem 20.10([46]). Let M be a 3-manifoldy: R x M — M a C*
volume-preserving Anosov flow. Thélt ¢ E* is Zygmund-regular, and
there is an obstruction to higher regularity that can be déssd geometri-
cally as the curvature of the image of a transversal undetarremap. This
obstruction defines the cohomology class of a cocycle, anfbtlowing are
equivalent:

(1) The longitudinal KAM-cocycle is a coboundary.
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(2) E* @ E* is “little Zygmund”.

(3) E* @ E* is Lipschitz.

(4) E* @ E® € C+ 1,

(5) ¢ is a suspension or contact flow.

Problem 20.11.Extend this result to higher dimension.

The complications in higher dimension are due in large [pettie¢ simple
fact that when the invariant foliations are not one-dimenal there may
be different contraction and expansion rates at any givem.pdherefore
a first step in working on this problem would be to assume umifqua-
siconformality in stable and unstable directions. This $tasng structural
implications in itself, though (Theorem 16.6, [32, 76, 128]

Different contraction and expansion rates are responaltdady for the
fact that in higher dimension the transverse regularitysigally lower than
in the two-dimensional case. Note that the results theremessert higher
regularity for both foliations than in the two-dimensiorsaka-preserving
case. If the obstruction vanishes that was used to show alitynof those
results, then the regularity “jumps” up a little, and a fentlobstruction,
associated with different contraction and expansion ratey prohibit reg-
ularity C1+0(lleez)) - Only when all those finitely many obstructions vanish
can we have!70llezl) These obstructions are best described in normal
form [55], as is the Anosov cocycle.

To give a sample we show that a “1-2-resonance” producesstruation
to C! foliations. To work with the simplest possible situatiomsaler a
3-dimensional Anosov diffeomorphisrhwith fixed pointp such that the
eigenvalues) < A < p < 1 < n < oo of Df, satisfyp = M. (This
is a variant of the 1-2-resonanée = A2 for a symplectic system.) Up
to higher-order terms that might arise from higher resoeartbe normal
formof f atpis f(x,y,z) = (nz, uy + axz, A\z). Representings* along
the z-axis by (1, v1(z), v2(2) gives

D fo02)(1v1(2),02(2)) = (0, a2 + pon(2), Ava(2)),
which rescales t01, az/n + uvi(2)/n, Av2(2)/n). Invariance ofE™ there-
fore yields

v1(Az) = az/n + pvi(2) /1.

Differentiating twice with respect te gives\v;(0) = a/n + (u/n)v}(0),
which impliesa = 0 since\ = p/n. Thus the resonance termin the
normal form is an obstruction t6* Anosov splitting. (One can verify this
without using normal forms, but the calculation is somevitiager.) By the
way, the work of Kanai mentioned below (Subsection 20b) nwadather
stringent curvature pinching assumption to rule out a nurobéw reso-
nances. The refinements by Feres and Katok that led to an tadomoplete
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proof of Theorem 20.17 centered on a careful study of thenastes that
might arise without such pinching assumptions. This wagat& work

because the issue are not only resonances at periodic pouttsalmost

resonances” between Lyapunov exponents. The papers [BOoB&in an

impressive development of these ideas.

While there is an analog of the Anosov cocycle in higher disnem, its
vanishing is known to be necessary only ot foliations [61] and is not
known to lead to higher regularity of the invariant foliat& Thus it has
not yielded any effective application, and the central iparbf the above
approach falls apart.

The bootstrap t@'> subbundles works in full generality, even without
area-preservation, although it usually starts at regylhigher thanC? (see
[60, 47]). In other words, once the invariant foliations @av sufficiently
high degree of regularity, they are always°.

b. Smooth rigidity. The main issue in higher dimension is to conclude
from smoothness of the invariant foliations that there isyxasth conjugacy
to an algebraic model, and to identify the right algebraideion the first
place.

A result that appeared after systematic development of dinéircious
time situation (see also [7, Theorem 3]) will serve to ilhagt this:

Theorem 20.12([8]). Let M be aC* manifold with anC* affine con-
nectionV, f: M — M a topologically transitive Anosov diffeomorphism
preservingV with £*, E* € C'*°. Thenf is C'"* conjugate to an automor-
phism of an infranilmanifold. The invariant connection byfgesis can be
replaced by invariance of a smooth symplectic form.

Note the absence of a topological hypothesis. (There ist@famooth-
ness sharpening of this result [38] that does not use the niwvtreorem
of Gromov central to the proof by Benoist and Labourie.)

Now we turn to the continuous time case, where these deveopimare
most significant.

The history begins with the work of Ghys [51], who classifiedwne-
preserving Anosov flows on 3-manifolds with smooth invarimiations
into suspensions of hyperbolic automorphisms of the tong geodesic
flows on surfaces of constant negative curvature (up to feuterings) as
well as a new type of flow that differs from the old ones by a sddtne
change. If the flow is known to be geodesic then the smoothugaicy
to the constant curvature geodesic flow preserves topabgi measure-
theoretic entropies, and hence by entropy rigidity (Sutbse0c, [79])
the original metric is constantly curved. The work towartsssification
of flows with smooth invariant foliations has followed thisodel closely.
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Before describing this, let us mention in passing the semgnissue of
reducing the regularity at which the classification becomessible. In
the situation of Ghys one can use an analysis of 3-dimenisimhiame-
preserving Anosov flows and a result entirely analogous teofém 20.9
[68] to conclude

Theorem 20.13[51, 68]). A negatively curved metric on a compact surface
is hyperbolic if its horocycle foliations ar@*+o@/los =),

In higher dimension the seminal work is due to Kanai [78]. Heswhe
first to implement the following strategy: If one assumed tha invariant
foliations are smooth then one can study Lie bracket raiatlwetween the
stable and unstable subbundles. The interaction betwese #nd the dy-
namics can be used to build an invariant connection (nanted @ now
[91]) and to show that it is flat, which in turn is used to builtia algebra
structure that is identifiable as a standard model.

He obtained the following result:

Theorem 20.14([78]). The geodesic flow of a strictly 9/4-pinched nega-
tively curved Riemannian metric on a compact manifold isatiy conju-
gate to the geodesic flow of a hyperbolic manifold if the irairfoliations
are C'*°.

Two groups picked up this lead, with the primary aim of renngvihe
pinching hypothesis, which in particular rules out non¢anty curved lo-
cally symmetric spaces as models. It also emerged that tireimport of
the assumptions is dynamical rather than geometric, anidhitbieefore one
should look for theorems about flows more general than géodass.

Feres and Katok [39, 37] built on Kanai’s idea by refining higusnents
with intricate analyses of resonance cases for Lyapunowrexps to cover
most of the ground in terms of the admissible algebraic ndel

Theorem 20.15([37]). Consider a compact Riemannian manifald of
negative sectional curvature. Suppose the horospheratimhs are smooth.

If the metric is 1/4-pinched akb/ has odd dimension then the geodesic flow
is smoothly conjugate to that of a hyperbolic manifold. & timension i
(mod 4) then the geodesic flow is smoothly conjugate to that of a gobti
of complex hyperbolic space.

Some of the results proved along the way to this conclusidmdt as-
sume that the flow under consideration is geodesic. The mreénes over
Kanai's work were, in the case of the first hypothesis, a meleate ar-
gument for vanishing of the curvature of the Kanai connectionder the
second hypothesis Feres shows that if the Kanai connedtioatiflat then
the invariant subbundles split further (resonance consioims enter here),
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and a connection associated with this further splitting tnbrgslocally ho-
mogeneous.

Roughly simultaneously the complete result about smoatiugacy was
obtained by Benoist, Foulon and Labourie [7]. Not only daesadlude all
geodesic flows, but it requires only a contact structurectvhiirned out to
require substantial additional work. This makes it a prapemterpart of
the three-dimensional result of Ghys:

Theorem 20.16([7]). Supposeb is a contact Anosov flow on a compact
manifold of dimension greater than 3, witi® Anosov splitting. Then there
is an essentially unique time change and a finite cover ontwihie flow is
C* conjugate to the geodesic flow of a negatively curved mahifol

What enables the authors to give a monolithic proof (as oggbts cov-
ering the various classes of symmetric spaces one by onelgislgy result
by Gromov [53, 6, 138]. This is the place where substantigliliaity is
needed, and on an-dimensional manifold one can replaCé® in hypoth-
esis and conclusion by* with k£ > m? + m + 2. This theorem is invoked
in the first major step of the proof, to produce a homogenetustsare:
The diffeomorphisms of the universal cover that respectspiidting and
the flow form a Lie group that acts transitively. (Gromov'edihem pro-
duces this structure on an open dense set, and the Kanaiatmmis used
to extend it.) Step two determines the structure of this grand its Lie
algebra, and step three develops the dynamics of the graupetates it to
the expected algebraic model.

The Feres—Katok approach needs a slightly different mihnexgular-
ity. In fact, if one adds the a posteriori redundant assuonpaf (nonstrict)
1/4-pinching (or merely strict 4/25-pinching) théf horospheric foliations
always force rigidity [60].

We note an amplified version for the case of geodesic flows iitlwh
the conjugacy conclusion for geodesic flows is replaced tmetry of the
metrics due to a more recent rigidity result by Besson, @isiend Gallot,
Theorem 20.29.

Theorem 20.17.If the horospheric foliations of a negatively curved com-
pact Riemannian manifold ai@> then the metric is locally symmetric (up
to isometry).

The above result subsumes several classification steps. dfiall, one
obtains an orbit equivalence, which implies coincidencéhefLyapunov
cocycles (periodic data). But furthermore, the originauiein [7] directly
arrives at a smooth conjugacy, which means that periodsraigie orbits
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are preserved as well. This is an extra collection of modwulitie contin-
uous time case. Finally, in the case of geodesic flows, tiseia addition,
the Besson—Courtois—Gallot Theorem 20.29, which givesstiraetry.

While the regularity of the invariant subbundles is usualifpstantially
lower than in the two-dimensional case, it is widely belgteat the mini-
mal regularity for such smooth rigidity results shoulddeor evenC''+1p,
i.e., quite close to that in Theorem 20.9. Indeed, these foliatame hardly
everC' L

Theorem 20.18.For an open dense set gfymplecticAnosov systems the
regularity predicted by computing® only from periodic points is not ex-
ceededi(e., if the rates compare badly at a single periodic point then the
regularity is correspondingly low—at that periodic poij§2]. An open
dense set of Riemannian metrics do not h@V¥€"* horospheric foliations
[62].

Furthermore, for any > 0 there is an open set of symplectic Anosov
diffeomorphisms for which the subbundles and holonomieg’aiat most
on a (Lebesgue) null sg3].

If the invariant subbundles aré? then the Liouville measure coincides
with the Bowen—Margulis measure of maximal entropy [58, 9&Epr Finsler
metrics this is false [117].) According to the Katok Entrdpigidity Con-
jecture (Subsection 20c), this should imply that the madilocally sym-
metric. Optimists might suspect that rigidity already agugdromC*+o(=llog =)
or C''tvemund g put there is no evidence to that effect (save for Theo-
rem 20.18).

Another result of Ursula Hamenstadt is worth remarking erehlt says
that for contact Anosov flows witli'! invariant foliations fixing the time
parametrization fixes all other moduli of smooth conjugacy.

Theorem 20.19([57]). If two conjugate (not just orbit equivalent) Anosov
flows both have”! Anosov splitting and preserve@? contact form then
the conjugacy i€2.

The C* assumption on the splitting is not vacuous, but not stribgen
ther, being satisfied by an open set of systems. Note thatah@igacy
preserves both Lebesgue and Bowen—Margulis measure. |keses in
mind that smooth conjugacy has been established mainlyomighside be-
ing algebraic, this result is striking in its generality.

Inasmuch as they refer to flows, the hypotheses of the pregeigjidity
results do not distinguish between the regularity of thergjrversus weak
invariant foliations. The reason is that for geodesic flowsrg) and weak
foliations have the same regularity due to the invariantacinstructure:
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The strong subbundles are obtained from the weak ones bgéateng with
the kernel of the smooth canonical contact form.

Plante [121] showed that the strong foliations may pensibtdail to
be C!, namely when the asymptotic cycle of volume measure is nonze
Even though the latter is not the case for (noncontact) geations of ge-
odesic flows, these flows may still fail to hag¢ strong foliations (see
[116, 11], where the contact form is “twisted” by an extra gnatic force
term”, which does not produce a nontrivial asymptotic cy.cle

c. Entropy rigidity. A different rigidity conjecture was put forward by
Katok in a paper that proved it for surfaces [79].
The result that prompted the conjecture is

Theorem 20.20([79]). For the geodesic flow of a unit-area Riemannian
metric without focal points on a surface of negative Eulearelateristic &/
the Liouville and topological entropies lie on either side\6—27E, with
equality (on either side) only for constantly curved metric

Conjecture 20.21([79, p. 347]) Liouville measure has maximal entropy
only for locally symmetric metricge.,only in these cases do the topologi-
cal and Liouville entropies agree.

One can restate this as saying that equivalence of Bowergthisuand
Lebesgue measure only occurs for locally symmetric spaddss con-
jecture has engendered an enormous amount of activity amaime unre-
solved. The exact nature of the results in [79] suggests sanmnts of this
conjecture, however, that have been adressed more sudbessf

Theorem 20.22([44]). The conjecture holds locally along one-parameter
perturbations of constantly curved metrics, butin dimend it is no longer
the case that a hyperbolic metric (with unit volume) maxasiziouville en-

tropy.

The Katok entropy rigidity conjecture cannot take quite satra form
as it does for surfaces. Foulon notes that for flows in dinmmnghree it
extends beyond the realm of geodesic flows:

Theorem 20.23([45]). A smooth contact Anosov flow on a three-manifold
whose topological and Liouville entropies coincide is, ogdihite covers,
conjugate to the geodesic flow of a constantly curved conwatice.

Conjecture 20.24(Foulon) Three-dimensional> Anosov flows for which
Bowen—Margulis and Lebesgue measure are equivalent mustbeonju-
gate to either a suspension of a toral automorphism or thelgsiz flow of
a compact hyperbolic surface.
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That a metric is locally symmetric has been proved underagér but
suggestive hypothesis [97]. Consider the universal coyef the manifold
in question and for each € M define a measurk, on the sphere at infinity
by projecting the Lebesgue measure on the splend along geodesics
starting atr (Lebesgue or visibility measure). Use a construction of the
(Bowen—)Margulis measure [104] to define measutesn the sphere at
infinity [56].

Theorem 20.25.If there is a constant such that\, = av, for all z then
M is symmetric.

Proof. By [96, 137] it is asymptotically harmonic, and by [47] andebh
rem 20.29 below it is symmetric. O

In fact, one can also definelmrmonicmeasure;, at infinity for every
x € M by using Brownian motion.

Theorem 20.26([95, 81]). In the case of surfaces the harmonic measure
class coincides with the Lebesgue class only when the auevstconstant.

Conjecture 20.27(The “Sullivan conjecture”, [131, p. 724])n higher
dimension the coincidence of the harmonic and visibilityasuee classes
happens only for locally symmetric spaces.

Theorem 20.28.If any two of these three measures here defined are pro-
portional for everyx thenM is symmetric.

Proof. This again follows from [96, 137, 47, 9]. O

The goal can be restated as the requirement to relax thetmsgistfrom
proportionality to mutual absolute continuity [97].

Coming from rather a different direction, Besson, Courtmsl Gallot
found themselves addressing a related issue by showingdpakogical
entropy is minimized only by locally symmetric metrics. ity speaking,
their result concerns the volume growth entréapyf a compact Riemannian
manifold, which is the exponential growth rate of the voluaiea ball in
the universal cover as a function of the radius. This is a tdveeind for
the topological entropy of the geodesic flow with equalityhié sectional
curvature is nonpositive [103] (in fact, when there are nojegate points
[50)).

Theorem 20.29([9]). Let X, Y be compact oriented connecteedimen-
sional manifolds,f: ¥ — X continuous of nonzero degree. df is a
negatively curved locally symmetric metric @nthen every metrig onY
satisfiesh” (Y, g) Vol(Y, g) > | deg(f)|h"(X, go) Vol(X, go) and forn > 3
equality occurs iff Y, g) is locally symmetric (of the same type(@s, go))
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and f is homotopic to a homothetic coveritlf, g) — (X, go). In partic-
ular, locally symmetric spaces minimize entropy when tHeme is pre-
scribed.

A version of this result holds for nonpositively curved lbggymmetric
spaces of rank 1, and one may ask whether their method extehitgher
rank.

A complementary result, about leaving the realm of geodiewes, is
contained in the work [118] of the brothers Paternain: “Timg’ any Anosov
geodesic flow (by adding a “magnetic” term to the Hamiltopstrictly de-
creases topological entropy.

21. QUANTITATIVE SYMPLECTIC GEOMETRY (HELMUT HOFER)

Denote by Symfy the category of2n-dimensional symplectic mani-
folds with embeddings serving as the morphisms. This cathe action
of (0,00) by rescaling:a*(M,w) = (M, aw). Consider a subcategogy
that is invariant under this action af@l co] with the standard ordering (on
which one has the same action). We do not require it to be afltate-

gory.
Definition 21.1. A (generalized) symplectic capacfty ¢ is an equivariant
functorc: € — [0, oo] with the property that((M,w)) > 0if M # @. For
1 < d < n ad-capacityis a capacity such that < ¢(B%? x R?"29) < oo
ande(B?42 x R?"~24+2) = oo, where B¢ denotes the open unit ball k¢
d-ball.

An example of az-capacity is

(M, w) = (/Mw">1/n.

Let B2"(a) denote the ball of radiug/x)"/* and defineZ?"(a) = B2(a) x
R?*=2 We putB?! = B?4(1) and similarlyZ?¢ = Z?(1). Gromov’s non-
squeezing result implies the existence of 1-capacitieB?1fa) symplecti-
cally embeds intdZ?"(b) thena < b. Therefore one can take

cpon (M, w) :=sup{a | (B*, aw) symplectically embeds int@/, w)}
or
& (M, w) :=inf{a | (M,w) symplectically embeds int6Z>", aw)}.

In fact, there are many 1-capacities one can construct frimer Eheory,
Gromov-Witten theory, symplectic field theory or contactmaobogy, and
many questions in symplectic geometry can be answered bstromting
such a functor. No example of @&capacity forl < d < n is known.
Therefore it is important to ask
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Question 21.2.Are thered-capacities for other than 1 and: in dimension
2n, wheren > 3?

This is a fundamental question about the nature of symplgetbmetry.
Clearly then-capacities are volume-related invariants and 1-caacitie
invariants of a 2-dimensional kind related to 2-dimensi@nass-sections.
The essence of Question 21.2 is captured by the next quesiimrerned
with dimension six.

Question 21.3.1s there ane > 0 such that for every: > 0 there is a
symplectic embedding @f*(¢) x B*(r) into B*(1) x R?*?

If the answer is “no” it means that in dimension siR-&apacity exists,
and in this case it is very likely that a proof has to be basedamne “new
symplectic technology”

The next question is exploring the problem if in some sensagbhnol-
ogy to deal with symplectic geometry in dimension four is gbete. Given
a positive quadratic forn®) define £y := {Q < 1} C R*" to be the as-
sociated ellipsoid. Then there is a unique ¥ := {a € (0,00)" | a; <
ay < --- < a,} such thatF' is by a linear symplectic map the same as the
ellipsoid E(a) :={z = (21, ..., 2,) € R* | 3 |2]*/a; < 1}.

On X define a “linear” partial orderingg; by a <; b:< there exists a lin-
ear symplectic mafi’ such thatl'(E'(a)) C E(b). By some linear algebra
this order structure is the same as requikinge b; for all . Define a “non-
linear” partial ordering<,,; by a <,; b:< there is a symplectic embedding
of E(a) into E(b). Itis a nontrivial result (due to Ekeland and Hofer) that
on the set of points “betweerl, ..., 1) and(2,.. ., 2) these two orderings
are the same, but this fails on any larger set (Lalonde and¥f¢dr n = 2,
Schlenk in general).

Consider capacities on ellipsoids and o€ > order the number§ja; |
j € Nji = 1,...,n} by size with multiplicities and denote this sequence
by cx(a) (If a = (1,5) we get 123455678910 10....). These are
capacities for each (and are due to Ekeland and Hofer).

Question 21.4.1sa <,,; bin R* equivalent tacy,(a) < cx(b) for all k£ and
aias < byby (this is the volume constraint)?

If the answer is indeed “yes” a proof can be expected to be kary.
Particular cases of this question are:

Question 21.5.1s (1,8) <, (3,3)? Is(1,4) <. (2,2)?
Schlenk can symplectically embed

E(1,8) — E(3.612,3.612) and E(1,4) — E(2.692, 2.692).
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Observe that’(1,4) and E(2, 2) have the same volume, so an embedding
will be very tight.

In general, consider a symplectic categ@rgnd denote the collection of
capacities on it bys. Then one can generate new ones. Consider a function
f:]0,00]™ — [0, 00] with f(1,...,1) > Othatis positively 1-homogeneous
(f(ta) = tf(a)) and monotone (if;; < b; thenf(a) < f(b)). Then, given
capacitiescy,...,c, € S we get a new capacity(cy,...,c,). Also, if
cy — cask — oo andc¢(B?*") > 0 thenc is a capacity as well. The
following is essentially a rephrasing of Question 21.4.

Question 21.6.Do thec, defined above together witlf w?)!/ generateS
in this way?

22. HILBERT'S 16TH PROBLEM (PRESENTED BYY ULIJ |ILYASHENKO)

Question 22.1(Hilbert’'s 16th Problem)What can be said about the num-
ber and location of the limit cycles of a polynomial ordinatifferential
equation in the plane?

This has been among the most persistent in Hilbert’s lisd, therefore
even simplified versions make for substantial problems:

Question 22.2(Hilbert’s 16th Problem for quadratic polynomials)/hat
can be said about the number and location of the limit cycfeanoordi-
nary differential equation in the plane whose right-hantksis a quadratic
polynomial?

This question remains unresolved as well. There are padsallts by
llyashenko and Llibre of the following type. For a Zariskyen set of qua-
dratic vector fields one can define a numerical characteon$tgach vector
field and then bound the number of limit cycles in terms of fasameter.

Numerous related problems may be found in the survey [69]

23. FOLIATIONS (PRESENTED BYSTEVEN HURDER)
Consider a compact manifold’ with a foliation F'.

Question 23.1.Can a leafL in a minimal setZ c M of the foliation be
deformed? Or can the minimal set be deformed?

Reeb showed that if there is a compact leaf with trivial holoy (.e.,
only the identity) then it has a foliated neighborhood tlsad producti.e.,
the situation is far from rigid. On the other hand, resultShywe show that
if there is enough cohomology data then one cannot move #ife le

Question 23.2.If Z is a minimal set inV/, are all leaves inZ diffeomorphic
up to covers?
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Duminy proved in 1982 that if the foliation i€ with codimension 1
leaves and is exceptionali(e., neitherM nor a single leaf) then all leaves
in Z have Cantor ends.

24. “FAT” SELF-SIMILAR SETS (MARK POLLICOTT)

A similarityonR?is amagl": R? — R?for which ||T'(x, y)—T (u,v)| =
rl|(z,y) — (u,v)||, where0 < r < 1 and|| - || is the Euclidean norm.
Given similaritiesTy, ..., T,: R — R? a setA is said to beself-similar
if A = J;_, T;(A). One may ask how “big” such sets can be, for exam-
ple, how close tal the Hausdorff dimension can be, whether they can have
positive Lebesgue measure or open interior.

In the case thad = 2, there are examples of self-similar sets with empty
interior and positive Lebesgue measure (this is due to riysdr Jordan,
Pollicott, Preiss and Solomyak [22] and answers a questidPeces and
Solomyak [119]). The construction uses 10 contractionsbiala factor
of 3), but there is some latitude in how the similarities dnesen, and a
different construction accomplishes the same result Bisigrilarities.

Question 24.1.Can one find examples using fewer similarities?

It is interesting to note that there are apparently no amalsgesults
whend = 1.

Question 24.2.Are the examples of self similar sets with positive measure
but empty interior inR?

Easier results are obtained from Sierpinski triangle$/# < A < 1 the
similarities
To(z,y) = (Az, Ay) + (0,0)
Ti(z,y) = (Az, Ay) + (1/2,0)
To(z.y) = (Az, My) + (0,1/2)
produce “fat” Sierpinski triangled, (the case\ = 1/2 gives the standard

Sierpinski triangle).
It is easy to check that wheéh< A < 1/2 one obtains a Cantor set with

) log 3
dlmH(A)\) = _log)\'
1
Theorem 24.3(Jordan [72]) dimy(Ay) = —% fora.e.\ € [1/2,(4/3)Y/3].

Thereisadense sét C [1/2,1/+/3] such thatlimy(Ay) < —log 3/log A
for A\ € D. One of the most interesting remaining questions is theoll

ing.
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Question 24.4.How large is the exceptional sé?? Is it uncountable?
Does it have nonzero Hausdorff dimension?

Let m be thed-dimensional Lebesgue measure.

Theorem 24.5(Jordan—Pollicott [73], Broomhead—Montaldi—Sidoro)15
m(Ay) > 0fora.e. X € [0.585...,0.647...] and in{A,) # @ for A >
647 .. ..

This suggests two natural questions.

Question 24.6.What is the largest value of such thatA , has empty inte-
rior?

Sidorov conjectures that the correct value is the reciproficéhe golden
ratio.

Question 24.7.Is there any\ € [0.585...,0.647...] for which int{A,) =
@ andm(A,) > 0?
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