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1. INTRODUCTION

At the Clay Mathematics Institute/Mathematical Sciences Research In-
stitute Workshop on “Recent Progress in Dynamics” in September–October
2004 the speakers and participants were asked to state open problems in
their field of research, and much of this problem list resulted from these
contributions. Thanks are due, therefore, to the Clay Mathematics Insti-
tute and the the Mathematical Sciences Research Institute for generously
supporting and hosting this workshop, and to the speakers, who graciously
responded to the suggestion that open problems be stated whenever pos-
sible, and who in many cases kindly corrected or expanded therenditions
here of the problems that they had posed. It is my hope that this list will
contribute to the impact that the workshop has already had. It was helpful
to this endeavor and is a service to the community that most lectures from
the workshop can be viewed as streaming video from the MSRI web site1.

In this list, almost all sections are based on an original version written by
myself about the problems as presented by the proposer in a talk during the
workshop. The proposer is identified by the attribution “(presented by. . . )”
in the section heading. Where the proposer undertook significant modifica-
tion of this original version, the section became attributed to the proposer
(without “presented by”). Section 8 and Section 13 were contributed by
their authors without any preliminary draft by myself and were only slightly
edited by me, and Section 11 is based in good part on the questions raised
by Keith Burns in his talk but was written collaboratively. Finally, the col-
lection of problems I describe in Section 20 was not as such presented at
the workshop, but includes problems familiar to many participants.

1http://www.msri.org/calendar/workshops/WorkshopInfo/267/showworkshop
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2. SMOOTH REALIZATION OF MEASURE-PRESERVING

TRANSFORMATIONS (ANATOLE KATOK)

Question 2.1.Given an ergodic measure-preserving transformationT of a
Lebesgue spaceX with probability measureµ, under which conditions is
there a diffeomorphismf of a compact manifoldM that preserves a smooth
volumeν for which(f, ν) is measurably isomorphic to(T, µ)? In particu-
lar, is there anyT with finiteµ-entropy for which there is no suchf?

Put differently, is finiteness of entropy (which, as shown first by Kush-
nirenko, holds for diffeomorphisms of manifolds with respect to any in-
variant Borel probability measure, seee.g.,[82, Corollary 3.2.10]) the only
restriction imposed on smooth models of measure-preserving transforma-
tions?

A potentially useful method is that of Anosov and Katok [2] (see also
[34] for a modern exposition) which provides nonstandard smooth realiza-
tions of certain dynamical systems. An important pertinentresult is due to
Pesin: For a smooth dynamical system on a surface with positive entropy,
weak mixing implies Bernoulli [120]. Thus there are restrictions on smooth
realizations on particular types of manifolds.

It is expected that there are indeed restrictions on realizability other than
finiteness of entropy, so long as one considers smooth measures. (Lind and
Thouvenot [98] showed that every finite-entropy measure-preserving trans-
formation can be realized as an automorphism of the 2-torus with respect
to a suitable invariant Borel probability measure.) Here the picture may be
different for infinite versus finite smoothness. In order to establish the ex-
istence of such restrictions one needs to construct some suitable invariants.
Again, on one hand one may look at specific manifolds or dimensions, such
as in Pesin’s aforementioned result for maps with positive entropy. For zero
entropy an interesting observation is Herman’s “Last Geometric Theorem”
[33]:

Theorem 2.2. An area-preservingC∞ diffeomorphismf of the disk that
has Diophantine rotation number on the boundary has a collection of in-
variant circles accumulating on the boundary.

The Anosov–Katok construction provides examples of nonstandard real-
ization of rotations with Liouvillian rotation numbers. Inparticular, given
any Liouvillian rotation numberρ, Fayad, Saprykina and Windsor ([36],
using the methods of [35]) constructed an area-preservingC∞ diffeomor-
phism of the disc that acts as the rotation byρ on the boundary and is mea-
surably isomorphic to it.

It should be mentioned here in passing that no nonstandard smooth real-
izations of Diophantine rotations are known:
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Question 2.3.Given an ergodic Diophantine rotation, is there an ergodic
volume-preserving diffeomorphism on a manifold of dimension greater than
1 that is measurably conjugate to the rotation?

Herman’s Theorem 2.2 suggests that this would be very hard toachieve
on a disk.

There are several systems where existing methods might helpdecide
whether a nonstandard smooth realization exists, such as Gaussian systems,
some interval exchanges, and maybe the horocycle flow on the modular
surface.

3. COEXISTENCE OFKAM CIRCLES AND POSITIVE ENTROPY IN

AREA-PRESERVING TWIST MAPS(PRESENTED BYANATOLE KATOK)

Consider the standard (twist) map

fλ(x, y) := (x + y, y + λ sin 2π(x + y))

of the cylinder (or annulus)C := S1 × R, which preserves area.

Question 3.1. Is the measure-theoretic entropyharea(fλ) positive (with re-
spect to area as the invariant Borel probability measure)

(1) for smallλ > 0?
(2) for someλ > 0 if the problem is considered instead onT2 = S1×S1

(to provide an invariant Borel probability measure)?

Positive entropy implies the existence of ergodic components of positive
area by a theorem of Pesin [120]. It is generally believed that the answers
should be positive.

As to the first part of this question, the KAM theorem is clearly a perti-
nent issue: For smallλ > 0 a large portion of the area of the cylinder is the
union of invariant circles. Nevertheless, the complement consists of regions
of instability that give rise to positivetopologicalentropy due to heteroclinic
tangles associated with hyperbolic periodic points. (In higher dimension the
invariant tori don’t even separate these regions of complicated dynamics.)
The horseshoes due to these tangles have zero measure, however, and ev-
erything one can prove using estimates of hyperbolicity type is necessarily
confined to sets of measure zero. To establish positive measure-theoretic
entropy, by contrast, requires control on a set of positive measure. In par-
ticular, one must ensure that the invariant circles of all scales do not fill a
set of full measure. This set is easily seen to be closed, and it has a Cantor
structure. Unfortunately the boundary circles arenot among those obtained
by the KAM theorem (this was apparently first observed by Herman), and
they are generally believed to be nonsmooth, which suggeststhat proving
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this to be the boundary of the hyperbolic domain will be difficult indeed; no
imaginable technique can be expected to serve the purpose.

This illustrates a fundamental problem: Just as Kolmogorovdiscovered
the essential tools for describing complicated dynamics, the KAM theorem
established, as illustrated in this essential example, that the applicability of
these tools even to mechanical problems faces fundamental limitations.

As to the second part of the question, it is known that nearλ = 0.98 · 2π
the last KAM circles disappear, so one might hope for the problem to be-
come tractable. However the elliptic periodic points don’tdisappear at that
stage. There is a plausible scheme to make all elliptic points disappear
for certain large parameter values which circumvents the global constraints
of index theory by creating orientation-reversed hyperbolic points and is in-
spired by Jakobson’s parameter-exclusion method for 1-dimensional maps[70].
This is aimed at finding parameters for which useful estimates can be car-
ried out.

A “realistic” variant of this problem might be to consider random pertur-
bations of this system. This is not devoid of difficulties, but might be more
tractable.

4. ORBIT GROWTH IN POLYGONAL BILLIARDS (ANATOLE KATOK)

Consider the billiard system in a triangle or, more generally, a polygon
P ⊂ R2. This is an area-preserving dynamical system. The challenge is to
understand the global complexity of such a system. For example, letS(T )
be the number of orbits of length at mostT that begin and end in vertices.

Problem 4.1. Find upper and lower bounds forS(T ).

Question 4.2.Is there a periodic orbit for every choice ofP?

This is open even for most obtuse triangles; R. Schwartz has shown how-
ever that if the maximal angle in a triangle is less than100◦ then periodic
orbits always exist [129].

Problem 4.3.Find conditions for ergodicity of the billiard flow with respect
to Liouville measure (area). In particular, is the billiardflow ergodic for
almost everyP?

Boshernitzan and Katok observed that based on the work of Kerckhoff–
Masur–Smillie [88], a Baire category argument produces a denseGδ of er-
godic polygons. Vorobets [134] improved this by giving an explicit suffi-
cient condition for ergodicity in terms of the speed of simultaneous approx-
imation of all angles modπ by rationals. Existence of even a single ergodic
example with Diophantine angles remains an open and probably very hard
question
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Katok [80] showed thatT−1 log S(T ) → 0, which is far from effective.
For rational polygons Masur [105] showed that there are positive constants
C1 andC2 such thatC1T

2 ≤ S(T ) ≤ C2T
2. For some examples, (e.g.,

those leading toVeech surfaces[67]) existence of quadratic multiplicative
asymptotics has been shown and even the constant calculated.

Anyeffective subexponential estimate (such ase−T 3/4

, say) for arbitrary
polygons would be a major advance.

Conjecture 4.4. limT→∞ S(T )/T 2+ǫ = 0 for every polygon and everyǫ >
0, butS(T )/T 2 is often irregular and unbounded.

It should be said that understanding orbit growth in measure-theoretic
terms with respect to the Liouville measure is not a difficultmatter; one
can calculate slow entropy and gets a quadratic growth rate.Indeed, Mañé
observed that the number of connections of length up toT between two
randomly chosen boundary points is on average quadratic inT , i.e., statis-
tically one sees quadratic orbit growth. Accordingly, any deviation from
quadratic orbit growth would be connected to different invariant measures.

The basic problem is the lack of structure here, except for rational poly-
gons where one can represent the problem in terms of a Riemannsurface
with a quadratic differential and then bring tools of Teichmüller theory to
bear. For irrational polygons one could try to associate a Riemann sur-
face of infinite genus in an analogous fashion, but this sacrifices recurrence.
There are some borderline cases where one can use recurrencein dynamical
systems that preserve an infinite measure.

The basic problem related to this circle of questions is thatin these para-
bolic systems dynamical complexity arises from a combination of stretching
and cutting. The stretching is well understood for polygonal billiards, and
produces quadratic growth (geometrically a shear), but usually produces
no periodic orbits; the interesting phenomena arise from cutting, which is
poorly understood beyond the fact that growth is subexponential.

5. FLAT SURFACES AND POLYGONAL BILLIARDS (PRESENTED BY

ANTON ZORICH)

This topic is closely related with the previous one. In fact,by unfolding,
rational billiards produce flat surfaces of a special kind. Powerful methods
based on the study of the Teichmüller geodesic flow on various strata of
quadratic differentials usually are not directly applicable to billiards.

Question 5.1.Is the geodesic flow on a generic flat sphere with 3 singular-
ities ergodic?

Question 5.2.Is there a closed regular geodesic?
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Two copies of a triangle with boundaries identified gives such a space,
so this problem is related to polygonal billiards. For some rational triangles
the initial direction is preserved and thus provides a first integral.

Question 5.3. Is there a precise quadratic asymptotic for the growth of
closed geodesics on every genus 2 flat surface?

There is much recent progress (such as the classification by Calta and
McMullen of Veech surfaces inH(2) – genus 2 with a single conical singu-
larity [20, 106]) to put this question into reach.

6. SYMBOLIC EXTENSIONS (M ICHAEL BOYLE AND SHELDON

NEWHOUSE)

Briefly, the effort to understand possible symbolic dynamics for a general
topological dynamical system leads to the Downarowicz theory of “entropy
structure”, a master entropy invariant which provides a refined and precise
structure for describing the emergence of chaos on refining scales. This
leads to problems of the compatibility of entropy structurewith varying
degrees of smoothness.

In the remainder of this section all homeomorphisms are assumed to have
finite topological entropy and to be defined on compact metrizable spaces.
If g is the restriction of some full shift on a finite alphabet to a closed shift-
invariant subsystemY , then(Y, g) is said to be asubshift.

Definition 6.1. Given a homeomorphismf of a compact metrizable space
X with finite topological entropy, asymbolic extensionof (X, f) is a con-
tinuous surjectionϕ : Y → X such thatf ◦ ϕ = ϕ ◦ g and (Y, g) is a
subshift.

Givenϕ as above, we may also refer to the subshift(Y, g) as a symbolic
extension of(X, f). A coding of a hyperbolic dynamical system by a topo-
logical Markov shift provides the classical example. In general, the subshift
(Y, g) is required to be a subsystem of some full shift on afiniteset of sym-
bols, but it need not be a Markov shift and its topological entropy (though
finite) need not equal that off .

Definition 6.2. Thetopological symbolic extension entropyof f ishsex(f):=
inf{htop(g)}, where theinf is over all symbolic extensions off . (If there
is no symbolic extension of(X, f), thenhsex(f) = ∞.) The topological
residual entropyof f is hres(f) := hsex(f) − htop(f).

If htop(f) = 0, thenhsex(f) = 0; otherwise, the residual and topological
entropies are independent, as follows.

Theorem 6.3([14, 27]). If 0 < α < ∞ and0 ≤ β ≤ ∞ then there is a
homeomorphismf with htop(f) = α andhres(f) = β.
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Let Mf be the space off -invariant Borel probabilities, and leth denote
the entropy function onMf , h(µ) = h(µ, f). The key to a good entropy
theory for symbolic extensions [12] is to study the extensions in terms of
Mf (as begun in [27]).

Definition 6.4. Let ϕ : (Y, S) → (X, f) be a symbolic extension of(X, f).
The extension entropy function ofϕ is the function

hϕ
ext: Mf → [0, +∞)

µ 7→ sup{h(ν, S) : ν ∈ Mg, ϕν = µ} .

For a givenµ ∈ Mf and a given symbolic extensionϕ, the number
hϕ

ext(µ) measures the information in the symbolic system used to encode
the trajectories in the support ofµ. Define the symbolic extension entropy
function off ,

hf
sex: Mf → [0,∞)

µ 7→ inf
ϕ

hϕ
ext(µ),

where theinf is over all symbolic extensionsϕ of (X, f). (If there is no
symbolic extension of(X, f), then definehf

sex ≡ ∞.) The functionhf
sex is

capturing for allµ in Mf the lower bound on the information required in
any finite encoding of the system (i.e., any symbolic extension of(X, f))
to describe the trajectories supported byµ. This function is a highly refined
quantitative reflection of the emergence of chaos (entropy)in the system
(X, f), as it reflects “where” the chaos arises (on the supports of which
measures) and also “how” (as the scale of resolution on whichthe system
is examined refines to zero). There is a more thorough elaboration of this
intuition in [28]; in any case, the final justification of the claim is the full
theory of entropy structure [12, 28].

To make this precise we follow the path of [27, 12, 28] and study an al-
lowed sequence of functionshn : Mf → [0,∞) which increase toh. An al-
lowed sequence determines theentropy structureof (X, f). There are many
choices of allowed sequence for(hn), studied in [28]; here is one concrete
and crucial (though not completely general) example, whichreflects the in-
tuition of “refining scales”. SupposeX admits a refining sequence of finite
partitionsPn, with diameters of partition elements going to zero uniformly
in n, and such that the boundary ofP hasµ measure zero, for allµ in Mf ,
for all n, and for allP in Pn. (Such partitions exist for example ifX is finite
dimensional with zero-dimensional periodic point set [93]or if (X, f) has
an infinite minimal factor [101, 99].) Sethn(µ) = hn(µ, f,Pn). Then(hn)
defines the entropy structure.

In [12], one general construction of the entropy structure is given, and
the collection of all the functionshϕ

ext is given a useful functional analytic
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characterization in terms of the entropy structure. Together with [29], this
reduced many problems involving symbolic extensions to problems of pure
functional analysis on a metrizable Choquet simplex. For example, it be-
came possible [12] to show the following

• There is a homeomorphismf with hres(f) < ∞, but with no sym-
bolic extension(Y, g) such thathtop(g) = htop(f) + hres(f).

• The functionhf
sex is upper semicontinuous and its maximum need

not be achieved at any ergodic measure.
• The topological symbolic extension entropy off is the maximum

value achieved by its symbolic extension entropy function.

Another outcome was an inductive characterization of the functionhf
sex from

the given sequencehn. Define the tail sequenceτn := h − hn, which de-
creases to zero. For ordinalsα, β, define recursively

• u0 ≡ 0
• uα+1 = limk(ũα + τk)
• uβ = the u.s.c. envelope ofsup{uα : α < β}, if β is a limit ordinal.

With these definitions, there is the following theorem.

Theorem 6.5. [12, 28] uα = uα+1 ⇐⇒ uα + hf = hf
sex, and such anα

exists among countable ordinals (even ifhsex≡ ∞).

The convergence above can be transfinite [12], and this indicates the sub-
tlety of the emergence of complexity on ever smaller scales.However the
characterization is also of practical use for constructingexamples.

Downarowicz unified the whole theory with an appropriate notion of
equivalence. Following [28], declare two nondecreasing sequences of non-
negative functions(hn) and (h′

n) to be uniformly equivalentif for every
integern andǫ > 0 there existsN such thathN > h′

n − ǫ andh′
N > hn − ǫ.

Now, let (hn) be a sequence defining the entropy structure in [12] (given
by a complicated general construction from [12]). Let(h′

n) be another non-
decreasing sequence of nonnegative functions onMf . Then by definition,
(h′

n) also defines the entropy structure if and only if it is uniformly equiva-
lent to the reference sequence(hn). Thus the entropy structure for a system
(X, f) is a certain uniform equivalence class of sequences of functions on
Mf . The many approaches to defining entropy lead to many candidate se-
quences(hn), and Downarowicz examined them [28]. With few exceptions,
the approaches yield sequences in the same uniform equivalence class as
the reference sequence (and most of these sequences are considerably more
simple to define then the reference sequence). A sequence uniformly equiv-
alent to the reference sequence determines all the same entropy invariants
(e.g., the topological entropy, the entropy function onMf , hf

sex, and the
transfinite order of accumulation in Theorem 6.5), by application of the
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same functional analytic characterizations as apply to derive the invariants
from the reference sequence. Because so many sequences leadto the same
encompassing collection of entropy invariants, it makes sense to refer to the
entire equivalence class of these sequences as theentropy structureof the
system.

Viewing the entropy structure as fundamental, one asks which structures
can occur. At the level of topological dynamics there is a complete answer,
due to Downarowicz and Serafin.

Theorem 6.6. [29] The following are equivalent.

(1) (gn) is a nondecreasing sequence of functions on a metrizable Cho-
quet simplexC, beginning withg0 ≡ 0 and converging to a bounded
functiong, and withgn+1 − gn upper semicontinuous for alln.

(2) There is a homeomorphismf of a compact metrizable space, with
entropy structure given by a sequence(hn), such that there exists
an affine homeomorphism fromMf to C which takes(hn) to a se-
quence uniformly equivalent to(gn).

Given (gn) above, Downarowicz and Serafin actually construct a model
f on the Cantor set such that the affine homeomorphism takes(hn) to (gn).
Moreover,f can be made minimal.

More generally one asks what entropy structures are compatible with
what degrees of smoothness.

Question 6.7.LetX be a compact Riemannian manifold and1 ≤ r ≤ ∞.
What entropy structures are possible forCr diffeomorphisms onX?

Precisely, Problem 6.7 asks the following: given(gn) a nondecreasing
sequence of nonnegative upper semicontinuous functions ona metrizable
Choquet simplexC, and converging to a bounded functiong, does there ex-
ist aCr diffeomorphismf onX, with entropy structure given by a sequence
(hn), such that there exists an affine homeomorphism fromMf to C which
takes(hn) to a sequence uniformly equivalent to(gn)?

Problem 6.7 is more a program for the decades than one problem. We
move to particular (still very difficult) problems within this program.

First, we isolate the one good distinguished class in the entropy structure
theory: this is the Misiurewicz class ofasymptoticallyh-expansivesystems
[109]. It turns out that(X, f) is asymptoticallyh-expansive if and only
if its entropy structure is given by a sequence(hn) which converges toh
uniformly [28], if and only if it has a principal symbolic extension in the
sense of Ledrappier (the factor map preserves the entropy ofevery invariant
measure) [14, 12]. Buzzi showed aC∞ system(X, f) is asymptotically
h-expansive[19].
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Question 6.8.Which asymptoticallyh-expansive entropy structures occur
for someC∞ diffeomorphism on some (or a given) compact manifoldX?

Note that the Newhouse conjecture (Conjecture 7.1) impliessevere con-
straints to realization ifX is a surface.

At the 1991 Yale conference for Roy Adler, Boyle presented the first
examples of systems with finite entropy but with no symbolic extension
(these were constructed in response to a 1988 question of JoeAuslander).
This provoked a question from A. Katok.

Question 6.9(Katok, 1991). Are there smooth finite entropy examples with
no symbolic extension?

We have seen that there are no badC∞ examples. For lesser smoothness,
Downarowicz and Newhouse showed that the situation is quitedifferent.

Theorem 6.10([30]). A generic area-preservingC1 diffeomorphism of a
surface is either Anosov or has no symbolic extension. If1 < r < ∞ and
dim(M) > 1 then there are residual subsetsR of open sets inDiffr(M)
such thathres(f) > 0—and hencef has no principal symbolic extension—
for everyf ∈ R.

The first result implies that a generic area-preservingC1 surface diffeo-
morphism that is not Anosov is not topologically conjugate to anyC∞ dif-
feomorphism; this includes all diffeomorphisms on surfaces other thanT2.
The difficult proof of [30] merges the detailed entropy theory of symbolic
extensions with genericity arguments for persistent homoclinic tangencies.
Concrete examples ofCr maps1 ≤ r < ∞ with positive residual entropy,
based on old examples of Misiurewicz [107, 108], are given in[13]. The
most important open problem currently is the following.

Question 6.11.Supposef is aCr diffeomorphism of a compact Riemann-
ian manifold, with1 < r < ∞. Is it possible forf to have infinite residual
entropy?

The arguments of [30] led Downarowicz and Newhouse to the following
more specific version of this problem.

Question 6.12.LetM be a compact manifold,f : M → M a Cr map with
r > 1. Is it necessarily true that

hsex(f) ≤ htop(f) +
dim M log Lip(f)

r − 1
?

The right-hand side here is effectively an iterated Yomdin-type defect.
Yomdin proved that the defect in upper semicontinuity givenby local vol-
ume growth isdim M log Lip(f)/r. In the contructions one tends to carry
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out in this field, one iterates the procedure that gives this estimate and di-
vides again byr each time. The right-hand side above is the sum of the
resulting geometric series. Forr = 1 andr = ∞ this right-hand side agrees
with the known results:C1-maps may not have a symbolic extension at all,
andC∞ maps have a principal symbolic extension. The question is related
to the sense that maps of intermediate regularity should have symbolic ex-
tensions, and the entropies of these should not be too much larger than that
of a map and by a margin that is less for maps with higher regularity.

7. MEASURES OF MAXIMAL ENTROPY (PRESENTED BYSHELDON

NEWHOUSE)

Conjecture 7.1(Newhouse). LetM be a compact surface andf : M → M
aC∞ diffeomorphism withhtop(f) > 0. Then there are at most finitely many
measures of maximal entropy.

Evidence for this conjecture can be found in many places. Franz Hof-
bauer essentially proved the analogous fact for piecewise monotone maps
of the interval.

There are a countable number of homoclinic closures, and allergodic
measures of sufficiently high entropy are supported on these.

The product of an Anosov diffeomorphism ofT2 with the identity on the
circle shows that in higher dimension such a claim can only hold with some
additional hypotheses.

8. PROPERTIES OF THE MEASURE-THEORETIC ENTROPY OF

SINAI –RUELLE–BOWEN MEASURES OF HYPERBOLIC ATTRACTORS

(CONTRIBUTED BY M IAOHUA JIANG)

LetDiff1+α(M) be the collection of allC1+α-diffeomorphisms on a com-
pact smooth Riemannian manifoldM . Assume that a mapf0 ∈ Diff1+α(M)
is transitive and has a hyperbolic attractorΛ as its nonwandering set. By
structural stability, anyg ∈ Diff1+α(M) in a sufficiently smallC1-neighborhood
of f0 is topologically conjugate tof0 on the attractor and its nonwandering
set is also a hyperbolic attractor. We denote this neighborhood of f0 by
UC1

ǫ (f0). LetU(f0) be the collection of those diffeomorphisms inDiff1+α(M)
that can be connected withf0 by a finite chain of such neighborhoods,i.e.,

U(f0) =
{

g ∃n ∈ N ∀i = 1, 2, · · · , n ∃ fi ∈ Diff1+α(M), ǫi > 0 :

g ∈ UC1

ǫn
(fn) andUC1

ǫi−1
(fi−1) ∩ UC1

ǫi
(fi) 6= ∅ for i = 1, 2, · · · , n.

}

The setU(f0) is an open set ofDiff1+α(M). Any mapf in U(f0) possesses
a hyperbolic attractor and there exists an SRB measureµf for f . Any two
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maps inU(f0) are conjugate by a Hölder continuous map that is not neces-
sarily close to the identity. Each map inU(f0) also has the same topological
entropy. However, the measure-theoretic entropyhµf

(f) of f ∈ U(f0) with
respect to its SRB measureµf can vary. It was shown by David Ruelle that
the dependence ofµf on the mapf is differentiable when the maps areC4.

Question 8.1.Is inff∈U(f0) hµf
(f) = 0?

Question 8.2.Does this functional have a local minimum?

For expanding maps on the circle, the infimum being zero was confirmed
by Mark Pollicott. The problems were raised during conversations between
Miaohua Jiang and Dmitry Dolgopyat.

9. SINAI –RUELLE–BOWEN MEASURES AND NATURAL MEASURES

(PRESENTED BYM ICHAŁ M ISIUREWICZ AND BASSAM FAYAD )

Definition 9.1. Let X be a compact measure-theoretic space,f : X → X
a continuous map,M the space of all probability measures onX and
f∗ : M → M, (f∗(µ))ϕ := µ(ϕ ◦ f), whereµ(ϕ) :=

∫

X
ϕ dµ for ϕ : X →

R. Given a “reference” measurem on X for which f∗(m) ≪ m and
An(µ) :=

∑n−1
k=0 fk

∗ (µ)/n, a Sinai–Ruelle–Bowen measure forf is a mea-
suremf such that there is an openU ⊂ X with m(U) > 0 such that
An(δx) −−−→

n→∞
mf for m-a.e. x ∈ U [135, 136]. Anatural measureis a

measuremf for which there is an open setU with m(U) > 0 such that
An(µ) −−−→

n→∞
mf for everyµ ∈ M with µ(U) = 1 andµ ≪ m.

Theorem 9.2.A Sinai–Ruelle–Bowen measure is natural.

Proof. IntegrateAn(δx) −−−→
n→∞

mf overx with respect tom. �

The converse does not hold.

Theorem 9.3 ([110, 111, 71]). If g is an expanding algebraic automor-
phism or an algebraic Anosov automorphism of a torusTd then there exists
f : Td → Td that is topologically conjugate tog and such that

(1) f∗(m) ≪ m for m = Lebesgue measure
(2) An(m) −−−→

n→∞
mf

(3) mf has maximal entropy
(4) {An(δx) | n ∈ N} is dense in the space off -invariant Borel proba-

bility measures form-a.e.x ∈ Td.

This particular situation is impossible for smooth (evenC1) f , which
motivates
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Question 9.4.With Lebesgue measure as the reference measure, are there
smooth dynamical systems for which the ergodic natural measure is not a
Sinai–Ruelle–Bowen measure?

There is an example of piecewise continuous, piecewise smooth interval
map for which the natural measure is the average of two delta-measures at
fixed points and an SRB measure does not exist [10, page 391].

One could say that in these examples the conjugacy sends Lebesgue mea-
sure to one that is completely unrelated to Lebesgue measure.

10. BILLIARDS (DOMOKOS SZASZ)

Consider a dispersing billiard on the two-dimensional torus with a finite
horizon (i.e.,assume that the length of orbit segments between impacts with
scatterers is bounded). The Lorentz process is theZ2-cover of this billiard.
(In other words, it is a billiard onR2 with periodically arranged convex
scatterers.) The phase space of the billiard can, of course,be embedded
isomorphically into the phase space of the Lorentz process,into its cell0,
say. Assume that the initial phase point of the Lorentz process is selected in
cell 0 according to the Liouville measure.

It is known that, for the billiard dynamics, correlations ofHölder func-
tions decay exponentially fast (cf. [136]). As a consequence, for Hölder
functions the central limit theorem holds, implying that for the correspond-
ing Lorentz process the typical displacement of orbits increases as the square
root of the number of collisions. However, for periodic trajectories of the
billiard the displacement is either bounded or is ballistic(i.e., it grows lin-
early with the number of collisions). According to a construction of [16]
(for more details and further references see [132]) there doexist ballistic
orbits.

Question 10.1.How large is the set of ballistic orbits? Could one give a
lower bound for its Hausdorff dimension?

This is a geometric question because it is not a matter of studying typi-
cal behavior. When one aims at constructing ballistic orbits different from
those arising from periodic ones the problem is that there are “shadows”
of the scatterers, which makes this situation different from geodesic flows
in negative curvature because it introduces an analog of positive curvature,
and there is no good geometric picture here.

11. STABLE ERGODICITY (WITH KEITH BURNS)

Definition 11.1. An embeddingf is said to bepartially hyperbolicon Λ
if there exists a Riemannian metric for which there are continous positive
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functionsλi, µi, i = 1, 2, 3 onM such that

0 < λ1 ≤ µ1 < λ2 ≤ µ2 < λ3 ≤ µ3 with µ1 < 1 < λ3

and an invariant splitting

TxM = Es(x) ⊕ Ec(x) ⊕ Eu(x), dxfEτ (x) = Eτ (f(x)), τ = s, c, u

into pairwise orthogonal subspacesEs(x), Ec(x) andEu(x) such that

λ1 ≤ ‖⌊dxf ↾ Es(x)⌋‖ ≤ ‖dxf ↾ Es(x)‖ ≤ µ1,

λ2 ≤ ‖⌊dxf ↾ Ec(x)⌋‖ ≤ ‖dxf ↾ Ec(x)‖ ≤ µ2,

λ3 ≤ ‖⌊dxf ↾ Eu(x)⌋‖ ≤ ‖dxf ↾ Eu(x)‖ ≤ µ3.

In this case we setEcs := Ec ⊕ Es andEcu := Ec ⊕ Eu.

Remark. Each subbundleEτ for τ = u, s, c, cu, cs is Hölder continuous.

Denote the set ofC2 partially hyperbolic diffeomorphisms of a com-
pact manifoldM by PHD2(M) and the set of volume-preserving such by
PHD2

vol(M).

Conjecture 11.2 (Pugh–Shub). The set of diffeomorphisms that are er-
godic with respect to volume contains aC2-dense andC1-open subset of
PHD2

vol(M).

Since the sole method available for establishing ergodicity from hyper-
bolicity is the Hopf argument, it is natural to considerus-paths, that is,
paths obtained by concatenating finitely many segments eachof which lies
entirely in a stable or an unstable leaf. The property of being joined by
a us-path is obviously an equivalence relation on points ofM . If there is
just one equivalence class, in other words if any two points are joined by
a us-path, we say that the diffeomorphism has theaccessibility property.
One also wants to consider this property modulo sets of measure 0, which
leads to theessential accessibility property, which says that a measurable
set which is a union of equivalence classes must have zero or full measure.

This suggests approaching the above conjecture via the two following
ones:

Conjecture 11.3.PHD2
vol(M) and PHD2(M) contain subsets consisting of

diffeomorphsims with the accessibility property that are bothC2-dense and
C1-open.

Conjecture 11.4.Essential accessibility implies ergodicity in PHD2
vol(M).

Pertinent known results are:

Theorem 11.5([26]). Conjecture 11.3 is true ifC2 dense is weakened to
C1 dense.
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Theorem 11.6([114, 65, 17]). Conjecture 11.3 is true for diffeomorphisms
with 1-dimensional center.

Removing the assumption of 1-dimensional center bundle will require
substantially new ideas.

Results towards Conjecture 11.4 are the classical ones by Hopf [66],
Anosov and Anosov–Sinai [1, 3] as well as those by Grayson, Pugh and
Shub [52, 123], Pugh and Shub [124, 125] and the most refined version due
to Burns and Wilkinson [18].

Definition 11.7. We say thatf iscenter-bunchedif max{µ1, λ
−1
3 } < λ2/µ2.

This holds automatically whenever the center bundle is 1-dimensional.

Theorem 11.8([18]). An (essentially) accessible, center-bunched, partially
hyperbolic diffeomorphism is ergodic (and, in fact, has theK-property).

With this in mind one can rephrase Conjecture 11.4 as follows:

Question 11.9.Can one dispense with the center-bunching hypothesis in
Theorem 11.8?

This would require a substantially new insight. The presenttechniques
crucially require center bunching, even though it has been weakened signif-
icantly from its earliest formulations.

Maybe a different approach is needed:

Question 11.10.Can one show that accessibility implies ergodicity of the
stable and unstable foliations in the sense that sets saturated by stable
leaves and sets saturated by unstable leaves must have either zero or full
measure?

It is not known whether a diffeomorphism that satisfies the hypotheses of
Theorem 11.8 must be Bernoulli.

Question 11.11.Are systems as in Theorem 11.8 Bernoulli?

The answer is expected to be negative, but the known examplesof K-
systems that are not Bernoulli are not of this type. It may be possible that a
study of early smooth examples by Katok may be instructive. They are not
partially hyperbolic but might be sufficiently “soft” to be useful here.

12. MIXING IN ANOSOV FLOWS(M ICHAEL FIELD)

Let Λ be a basic set for the Axiom A flowΦ andP denote the periodic
spectrum ofΦ ↾ Λ (set of prime periods of periodic orbits). Bowen showed
thatP is an invariant of mixing. The analyticity and extension properties of
theζ-functionζΦ of Φ are (obviously) determined byP (for the definition
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of ζΦ we assume the measure of maximal entropy onΛ). In view of the
close relation between exponential mixing ofΦ and extension properties of
ζΦ [122], we ask

Question 12.1.Is the periodic spectrum an invariant of exponential mix-
ing?

(For conditions onP related to rapid mixing, see [41, Theorem 1.7].)
Let x be a homoclinic point for the periodic orbitΓ. In [41] a definition

is given of ‘good asymptotics’ for the pair(Γ, x). Without going into detail,
the definition involves precise asymptotic estimates for a sequence of peri-
odic orbits which converge to theΦ-orbit of x. Typically, good asymptotics
is an open condition in theC2-topology. If there exists(Γ, x) with good
asymptotics thenΦ is (rapidly) mixing [41].

Definition 12.2. We sayΦ hasvery good asymptoticsif every pair(Γ, x)
has good asymptotics in the sense of [41].

This is a generic condition on Axiom A flows.

Question 12.3.Does very good asymptotics imply exponential mixing?

A weaker (but perhaps more tractable) version of this question is

Question 12.4.Does very good asymptotics imply analytic extension of the
ζ-function?

A flow Φ is Cr-stably mixing if there exists aCr-open neighbourhood
of Φ consisting of mixing flows. It was shown in [41] that ifr ≥ 2 then a
Cr-Axiom A flow can beCr-approximated by aC2-stably mixing Axiom
A flow (in fact, by aC2-stably rapid mixing flow). If the flow is Anosov or
an attractor one may approximate by aC1-stably mixing flow.

Question 12.5.If the dimension of the basic set is at least two, can one
always approximate by aC1-stably mixing flow?

(This is really a question about the local geometry of the basic set. For
example, it suffices to know thatW uu(x) ∩ Λ is locally path connected for
all x ∈ Λ. This condition is automatically satisfied for attractors.)

For results and background related to the following question see [40].

Problem 12.6.Suppose the dimension of the basic set is one (suspension of
a subshift of finite type). Show that ifΦ is C1-stably mixing, thenΦ cannot
beCr, r > 1.

Of course, it is interesting here to find examples whereC1+α-stable mix-
ing of Φ implies thatΦ cannot be more regular thanC1+α.

Although the results in [41] show that every Anosov flow can beapprox-
imated by aC1-stably mixing Anosov flow, there remains the
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Conjecture 12.7. (Plante [121]) For transitive Anosov flows, mixing is
equivalent to stable mixing.

As Plante showed, the conjecture amounts to showing that if the strong
foliations are integrable then they cannot have dense leaves.

13. THE STRUCTURE OF HYPERBOLIC SETS(CONTRIBUTED BY TODD

FISHER)

As stated in Section 16 below, there are a number of fundamental ques-
tions about the structure of Anosov diffeomorphisms. It is then not surpris-
ing that there are a number of problems concerning the structure of general
hyperbolic sets.

A question posed by Bonatti concerns the topology of hyperbolic attrac-
tors.

On surfaces a hyperbolic attractor can be either the entire manifold (Anosov
case) or a 1-dimensional lamination (“Plykin attractors”).

On 3-dimensional manifolds there are many kinds of hyperbolic attrac-
tors: LetA be a hyperbolic attractor of a diffeomorphismf on a compact
3-manifoldM . The following cases are known to exist.

(1) If the unstable manifold of the pointsx ∈ A are bidimensional, then
A is either the torusT 3 (Anosov case), or a bidimensional lamina-
tion.

(2) If the unstable manifolds of the pointsx ∈ A are 1-dimensional,
then the attractor can be
(a) a 1-dimensional lamination which is transversely Cantor (“Williams

attractors”) or
(b) an invariant topological 2-torusT2, and the restriction off to

this torus is conjugate to an Anosov diffeomorphism (however,
the torusT2 can be fractal with Hausdorff dimension strictly
bigger than 2).

Question 13.1.Is there some other possibility? For example, is it possi-
ble to get an attractor such that the transversal structure of the unstable
lamination is a Sierpinsky carpet?

In [42] the following is shown.

Theorem 13.2. If M is a compact surface andΛ is a nontrivial mixing
hyperbolic attractor for a diffeomorphismf of M , andΛ is hyperbolic for
a diffeomorphismg of M , thenΛ is either a nontrivial mixing hyperbolic
attractor or a nontrivial mixing hyperbolic repeller forg.

Additionally, it is shown in [42] by counterexample that theabove does
not hold in higher dimensions for general attractors. However, if we add
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some assumptions on the attractor or weaken the conclusion we have the
following problems.

Question 13.3.SupposeM is a compact smooth boundaryless manifold of
dimensionn andΛ is a mixing hyperbolic attractor forf with dim(Eu) =
n − 1 and hyperbolic for a diffeomorphismg. Does this imply thatΛ is a
mixing hyperbolic attractor or repeller forg?

Question 13.4.SupposeΛ is a locally maximal hyperbolic set for a diffeo-
morphismf and hyperbolic for a diffeomorphismg. Does this imply that
Λ is locally maximal forg? or that Λ is contained in a locally maximal
hyperbolic set forg?

Related to Problem 13.4 we note that in [43] it is shown that onany mani-
fold, of dimension greater than one, there is an open set of diffeomorphisms
containing a hyperbolic set that is not contained in a locally maximal one.
Furthermore, it is shown if the dimension of the manifold is at least four that
there is an open set of diffeomorphisms containing a transitive hyperbolic
set that is not contained in a locally maximal one.

Question 13.5.SupposeM is a compact surface andΛ ⊂ M is a transi-
tive hyperolic set for a diffemorphismf of M . If Λ is transitive, then isΛ
contained in a locally maximal hyperbolic set?

Inspired by Hilbert’s famous address in 1900, Arnold requested various
mathematicians to provide great problems for the21st century. Smale gave
his list in [130]. Smale’s Problem12 deals with the centralizer of a “typical”
diffeomorphism. Forf ∈ Diffr(M) (the set ofCr diffeomorphisms from
M to M) the centralizer off is

C(f) = {g ∈ Diffr(M) fg = gf}.
Let r ≥ 1, M be a smooth, connected, compact, boundaryless manifold,
and

T = {f ∈ Diffr(M) |C(f) is trivial}.
Smale asks whetherT is dense inDiffr(M). Smale also asks if there is a
subset ofT that is open and dense inDiffr(M). Smale states: “I find this
problem interesting in that it gives some focus in the dark realm beyond
hyperbolicity where even the problems are hard to pose clearly.” [130]

Even though Smale states that the problem of studying the centralizer
gives focus on nonhyperbolic behavior, unfortunately eventhe hyperbolic
case, in general, remains open. However, a number of people have partial
results to Smale’s question for Axiom A diffeomorphisms.

Palis and Yoccoz [115] have shown that there is an open and dense set of
C∞ Axiom A diffeomorphisms with the strong transversality property and
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containing a periodic sink that have a trivial centralizer.Togawa [133] has
shown that on any manifold there is aC1 residual set amongC1 Axiom A
diffeomorphisms with a trivial centralizer.

Question 13.6.For any manifold and anyr ≥ 1 is there an open and dense
setU contained in the set ofCr Axiom A diffeomorphisms such that any
f ∈ U has a trivial centralizer.

14. THE DYNAMICS OF GEODESIC FLOWS(PRESENTED BYGERHARD

KNIEPER)

Conjecture 14.1.For any compact manifold the geodesic flow of a generic
Riemannian metric has positive topological entropy.

This holds for surfaces. Specifically, for tori this is achieved using meth-
ods of Hedlund, Birkhoff and others to construct a horseshoe, and for higher
genus this is a consequence of the exponential growth forcedby entropy.
Consequently only the sphere requires substantial work. For the sphere
Contreras and Paternain [21] showed this in theC2-topology (for metrics)
using dominated splitting and Knieper and Weiss [92] provedthis in theC∞

topology using global Poincaré sections (pushed from the well-known case
of positive curvature using work of Hofer and Wysocki in symplectic topol-
ogy) and the theory of prime ends as applied by Mather. A consequence
(via a theorem of Katok) is that generically there is a horseshoe and hence
exponential growth of closed geodesics.

Question 14.2.Can one make similar statements for Liouville entropy?

Question 14.3.Is there a metric of positive curvature whose geodesic flow
has positive Liouville entropy?

The underlying question is whether there is a mechanism for the genera-
tion of much hyperbolicity from positive curvature.

If a manifold of nonpositive curvature has rank 1 (i.e.,every geodesic is
hyperbolic), then the unit tangent bundle splits into two sets that are invari-
ant under the geodesic flow, the regular set, which is open anddense, and
the singular set.

Question 14.4.Does the singular set have zero Liouville measure?

An affirmative answer would imply ergodicity of the geodesicflow. For
analytic metrics on surfaces the singular set is a finite union of closed
geodesics. There are examples where the singular set carries positive topo-
logical entropy.

Irreducible nonpositively curved manifolds of higher rankare locally
symmetric spaces by the rank rigidity theorem. In this case closed geodesics
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are equidistributed. Forǫ > 0 let Pǫ(M) be a maximal set ofǫ-separated
closed geodesics andPǫ(t) := {c ∈ Pǫ(M) ℓ(c) ≤ t}. By a result of
Spatzier there is anǫ > 0 such thatlimt→∞(1/t) log card Pǫ(t) = htop(ϕ

t).
This implies that closed geodesics are equidistributed with respect to the
measure of maximal entropy.

Question 14.5.Can one replace “ǫ-separated” by “nonhomotopic”?

This is likely but unknown.

15. AVERAGING (YURI K IFER)

The basic idea in averaging is to start from an “ideal” (unperturbed) sys-
tem

dX(t)

dt
= 0, X(0) = 0

dY (t)

dt
= b(x, Y (t)), Y (0) = y

that gives rise to the flowϕt
0 : Rd×M → Rd×M , (x, y) 7→ (x, F t

x(y)). In-
tegrable Hamiltonian systems are of this type. One then perturbs the system
by adding a slow motion in the first coordinate:

dXǫ(t)

dt
= ǫB(Xǫ(t), Y ǫ(t)), Xǫ(0) = x

dY ǫ(t)

dt
= b(Xǫ(t), Y ǫ(t)), Y ǫ(0) = y

We writeXǫ = Xǫ
x,y andY ǫ = Y ǫ

x,y. This results in a flow

ϕt
ǫ(x, y) = (Xǫ

x,y(t), Y
ǫ
x,y(t)),

with X representing the slow motion. The question is whether on a time
scale oft/ǫ the slow motion can be approximated by solving the averaged
equation whereB is replaced byB̄ which is obtained from the former by
averaging it along the fast motion (see [89] and [90]).

(15.1)
Xǫ(t)

dt
= ǫB(Xǫ(t))

In discrete time the “ideal” unperturbed system is of the form

ϕ0(x, y) = (x, Fx(y))

with x ∈ Rd, Fx : M → M . The perturbed system is

ϕǫ(x, y) = (x + ǫΨ(x, y), Fx(y)),
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and we can bring this into a form analogous to the one for continuous time
by writing it as difference equations:

Xǫ(n + 1) = Xǫ(n) + ǫΨ(Xǫ(n), Y ǫ(n))

Y ǫ(n + 1) = FXǫ(n)(Y
ǫ(n))

It is natural to rescale time tot/ǫ, and a basic averaging result (Artstein and
Vigodner [4]) is that (in a sense of differential inclusion)any limit point of

{Xǫ(t/ǫ) | ǫ > 0, t ∈ [0, T ]}

is a solution of
dZ0(t)

dt
= Bµz(Z

0(t))

with Z0(0) = x, whereµz is Fx-invariant andBµ(x) :=
∫

B(x, y) dµ(y).
Heuristically one instead uses the following averaging principle. Suppose
the limit B(x) := limt→∞

∫ t

0
B(x, F s

x(y)) ds/t exists for “most”(x, y) and
“almost” does not depend ony. Then try to approximateXǫ(t) in some
sense over time intervals of order1/ǫ by the averaged motionX given by
(15.1) withXǫ(0) = x. (This goes back to Clairaut, Lagrange, Laplace,
Fatou, Krylov–Bogolyubov, Anosov, Arnold, Neishtadt, Kasuga and oth-
ers, and there are also stochastic versions.) One then wouldlike to know
whether

sup
0≤t≤T/ǫ

|Xǫ(t) − Xǫ(t)| −−→
ǫ→0

0,

and in which sense this happens. Next one can inquire about the error
Xǫ(t) − Xǫ(t).

New results assume that the fast motion is chaotic, typically the second
factor is assumed to be hyperbolic. One can then hope for approximation
in measure, and there are theorems to that effect in 3 main cases: The fast
motion is independent of the slow one (this is the easy case, and one gets
a.e.-convergence), when the fast motion preserves a smoothmeasure that
is ergodic for a.e.x (this is due to Anosov and covers the Hamiltonian
situation), and much more recently, when the fast motion is an Axiom-A
flow (dependingC2 on x as a parameter) in a neighborhood of an attractor
endowed with Sinai–Ruelle–Bowen measure.

One may in the latter case ask whether there is a.e.-convergence rather
than in measure. For instance, this is not true in general in the case of
perturbations of integrable Hamiltonian systems. In the latter case we may
have no convergence for any fixed initial condition from a large open set
(see Neishtadt’s example in [90]). This is related to the question of whether
there are resonances and whether these affect convergence and how. To
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make this concrete, consider the discrete-time system

Xǫ(n + 1) = Xǫ(n) + ǫ sin 2πY ǫ(n)

Y ǫ(n + 1) = 2Y ǫ(n) + Xǫ(n) (mod 1).

Question 15.1.Is

lim
ǫ→0

sup
0≤n≤T/ǫ

|Xǫ(n) − Xǫ(0)| = 0

for Lebesgue-almost every(x, y)?

It is known by a large-deviations argument (see [90]) that given δ > 0
the measure of the set of(x, y) for which sup0≤n≤T/ǫ |Xǫ(n) − Xǫ(0)| > δ

is at moste−c/ǫ for someC > 0.
When one considers the rescaled averaged motionZ(t) = Xǫ(t/ǫ) (aver-

aged with respect to Sinai–Ruelle–Bowen measure) anadiabatic invariant
is an invariant function,i.e.,a functionH such thatH(Z(t)) = H(Z(0)).

Conjecture 15.2. On (M, vol), H(Xǫ(t/ǫ2)) converges weakly to a diffu-
sion, assuming that the fast motion is hyperbolic.

It may be simpler to start with expanding fast motions.

Question 15.3.Does this framework apply to give results at high energies
for geodesic flows in negative curvature with an added potential?

16. CLASSIFYING ANOSOV DIFFEOMORPHISMS AND ACTIONS

(PRESENTED BYANATOLE KATOK AND RALF SPATZIER)

The classical question on which these questions are based iswhether one
can classify all Anosov diffeomorphisms. This has been doneup to topo-
logical conjugacy on tori and nilmanifolds and for codimension-1 Anosov
diffeomorphisms [48, 102, 113]. The central ingredient is the fundamental
observation by Franks that if an Anosov diffeomorphism on a torus acts on
the fundamental group in the same way as a hyperbolic automorphism then
there is a conjugacy. Manning proved that any Anosov map of the torus is
indeed of this type and extended the result to nilmanifolds.

Question 16.1.Is every Anosov diffeomorphism of a compact manifoldM
topologically conjugate to a finite factor of an automorphism of a nilmani-
fold N/Γ?

If there are indeed other examples, then there is currently alack of imagi-
nation regarding the possibilities for Anosov diffeomorphisms. In the frame-
work of the proofs mentioned above the central assumption isthat the uni-
versal cover isRn and the map is globally a product, but there is no a priori
reason that this should be so. Indeed, for Anosov flows the situation is quite
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different, and there are many unconventional examples of these, beginning
with one due to Franks and Williams that is not transitive [49].

In higher rank there are plausible mechanisms to rule out topologically
exotic discrete Anosov actions.

Perturbation of periodic points shows that one cannot expect better than
topological classification of Anosov diffeomorphisms, andan example by
Farrell and Jones suggest a different reason: There is an Anosov diffeomor-
phism on an exotic torus.

One may ask about characterizations of algebraic Anosov actions up to
C∞ conjugacy.

Theorem 16.2([8]). An Anosov diffeomorphism withC∞ Anosov splitting
that preserves an affine connection (e.g.,is symplectic) isC∞ conjugate to
an algebraic one.

Conjecture 16.3. Instead of preservation of an affine connection this can
be done assuming preservation of some sensible higher-order geometric
structure,e.g.,a Gromov-rigid structure.

Question 16.4.Does preservation of an affine connection alone suffice?

Question 16.5.Does smooth splitting alone suffice?

This might be possible. A natural approach would be to construct invari-
ant structures on the stable and unstable foliations and glue these together
to a global invariant structure. The problem is that in some of the standard
nilpotent examples the natural structure is not of the type one gets this way.

A different and more recent result is the following:

Theorem 16.6([76, 32]). A uniformly quasiconformal Anosov diffeomor-
phism isC∞ conjugate to an algebraic one.

Conjecture 16.7 (Katok). An Anosov diffeomorphism whose measure of
maximal entropy is smooth is smoothly conjugate to an algebraic one.

Anosov flows are much more flexible, there are many examples that make
a classification seem unlikely [49, 59]. There are some characterizations of
algebraic flows. These provide some results similar to the above, as well as
analogous problems.

The situation is rather different for algebraic actions so long as they are ir-
reducible (e.g.,not products of Ansov diffeomorphisms). These actions are
usually hard to perturb. Katok and Spatzier showed that suchactions with
semisimple linear part are rigid [85], and Damjanovic and Katok pushed
this to partially hyperbolic actions on tori [23].

Conjecture 16.8. Any C∞ AnosovRk- (or Zk-) action for k ≥ 2 on a
compact manifold without rank 1 factors is algebraic.
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No counterexamples are known even with lower regularity than C∞.
A pertinent result by Federico Rodrı́guez Hertz is that

Theorem 16.9([64]). A Z2 action onT3 with at least one Anosov element
and whose induced action on homology has only real eigenvalues (one less
than 1 and 2 bigger than 1) isC∞ conjugate to an algebraic one.

In fact, more generally, letΓ be a subgroup of GL(N, Z), the group of
N × N matrices with integer entries and determinant±1, and say that the
standard action ofΓ on TN is globally rigid if any Anosov action ofΓ on
TN which induces the standard action in homology is smoothly conjugate
to it.

Theorem 16.10([64]). LetA ∈ GL(N, Z), be a matrix whose characteris-
tic polynomial is irreducible overZ. Assume also that the centralizerZ(A)
of A in GL(N, Z) has rank at least2. Then the associated action of any
finite index subgroup ofZ(A) onTN is globally rigid.

The assumption on the rank of the centralizer is hardly restrictive. Due
to the Dirichlet unit theorem, in the above case,Z(A) is a finite extension
of Zr+c−1 wherer is the number of real eigenvalues andc is the number of
pairs of complex eigenvalues. So,r + 2c = N , andZ(A) has rank1 only if
N = 2 or if N = 3 andA has a complex eigenvalue or ifN = 4 andA has
only complex eigenvalues.

In [64] Hertz also states:

Question 16.11.ConsiderN ≥ 3, A ∈ GL(N, Z) such thatZ(A) is “big
enough”. Under which assumptions is the standard action of every finite-
index subgroupΓ onTN globally rigid?

Another rigidity result is due to Kalinin and Spatzier

Theorem 16.12([77]). If M is a compact manifold with a CartanRk-action
such thatk ≥ 3, there is a dense set of Anosov elements and every 1-
parameter subgroup is topologically transitive (hence there are no rank-1
factors) then this action isC∞ conjugate to an algebraic one, indeed a
homogeneous one (i.e., the left action ofRk embedded in a groupG on
G/Γ for a cocompact discrete subgroupΓ).

(Homogeneous Anosov actions of this type are not classified because it
is not known how to classify suspensions of AnosovZk-actions on nilman-
ifolds.)

Question 16.13.Does the Kalinin–Spatzier result hold fork = 2?

Question 16.14.Does the Kalinin–Spatzier result hold assuming only the
existence of an Anosov element?
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Question 16.15.Does the Kalinin–Spatzier result hold without the transi-
tivity assumption (and maybe even without excluding rank-1factors)?

17. INVARIANT MEASURES FOR HYPERBOLIC ACTIONS OF

HIGHER-RANK ABELIAN GROUPS (ANATOLE KATOK)

The basic example is Furstenberg’s “×2 × 3”-example of theN2-action
onS1 generated byEi : x 7→ ix (mod 1) for i = 1, 2. For a single of these
transformations there are plenty of invariant measures, but for {Ei i ∈ N}
the only jointly invariant measures are easily seen to be Lebesgue measure
and the Dirac mass at 0. The same holds if one takes a polynomial P (·)
with integer coefficients and considers{EP (n) n ∈ N}. Furstenberg asked
whether Lebesgue measure is the only nonatomic invariant Borel probabil-
ity measure forE2 andE3.

The second example isM = SL(n, R)/Γ for n ≥ 3 and a latticeΓ ⊂
SL(n, R). The Weyl chamber flow(WCF) is the action of the setD of
positive diagonal elements onM by left translation. (D is isomorphic to
Rn−1).

Problem 17.1.Find all invariant measures for these two examples.

Rudolph [127] showed in 1990 that a measure invariant under both E2

andE3 for which one ofE2 andE3 has positive entropy is Lebesgue mea-
sure. Geometric methods which form the basis of most of the work up to
now were introduced in [87]. In 2003 Einsiedler, Katok and Lindenstrauss
[31] proved the analogous result for the Weyl chamber flow (assuming pos-
itive entropy for one element of the action). See[100] for a survey of the
this rapidly developing subject at a recent (but not present) date.

Fundamentally the issues for the case of positive entropy are reasonably
well understood although (possibly formidable) technicalproblems remain.
However, even simple questions remain in the general case. Here is an
example.

Question 17.2.Given an Anosov diffeomorphism and a generic ergodic
invariant measure (i.e., neither Lebesgue measure nor an atomic one), is
there a diffeomorphism that preserves this measure and thatis not a power
of the Anosov diffeomorphism itself?

Indeed, the zero-entropy case is entirely open, and expertsdiffer on the
expected outcome. One can take a geometric or Fourier-analytic approach.
The difficulty with the latter one is that even though one has anatural dual
available, measures don’t behave well with respect to passing to the dual.
At the level of invariant distributions there is little difference between rank 1
and higher rank whereas the wealth of invariant measures is quite different
between these two situations. The geometric approach produced the results
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for positive entropy, but in the zero-entropy situation conditional measures
on stable and unstable leaves are atomic.

Thus, we either lack the imagination to come up with novel invariant
measures or the structure to rule these out.

As to the reason for concentrating on abelian actions, this simply provides
the first test case for understandinghyperbolicactions in this respect. Re-
cently, substantial progress was achieved beyond the algebraic or uniformly
hyperbolic cases [75, 84]. The paradigm here is that positive entropy hyper-
bolic invariant measures are forced to be absolutely continuous if the rank
of the action is sufficiently high,e.g.,for Zk actions onk + 1-dimensional
manifolds fork ≥ 2.

For unipotentactions, by contrast, the Ratner rigidity theory is fairly
comprehensive, but here the paradigm is in essence unique ergodicity, which
is quite different from the hyperbolic situation.

18. RIGIDITY OF HIGHER-RANK ABELIAN ACTIONS (PRESENTED BY

DANIJELA DAMJANOVIC)

Consider actions ofA = Zk or A = Rk on a compact manifold, where
k ≥ 2. One class of these areZk-actions onTN by toral automorphisms; we
say that these aregenuinely of higher rankif there is a subgroup isomorphic
to Z2 that acts by ergodic automorphisms. Another class consiststhe action
by the diagonalA = Rn−1 on M = SL(n, R)/Γ, or actions by a generic
hyperplaneRd for 2 ≤ d < n − 1. This is a partially hyperbolic action
whose neutral direction is the neutral direction for the full Cartan. For the
first of these cases Katok and Damjanovic have proved rigidity [24], and
this raises the following

Question 18.1.Can the KAM-methods of Damjanovic and Katok be used
to establish rigidity in actions of the second type?

The second situation provides much more geometric structure than the
first one, and this can be put to use. Methods of Katok and Spatzier [86]
apply to the study of perturbations in the neutral direction, each of which is
given by a cocycle over the perturbed action. Therefore the same objective
can be achieved by answering

Question 18.2.Can one show cocycle rigidity for the perturbed actions?

Katok and Kononenko [83] have established Hölder cocyle stability for
partially hyperbolic diffeomorphisms with the accessibility property that
could be put to use here. Progress has been achieved recentlyby first intro-
ducing a new method for proving cocycle rigidity [23] which uses results
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and methods from algebraic K-theory and then developing this method fur-
ther so that it applies to cocycle over perturbations and hence produces local
rigidity for the actions of the second kind [25]

19. LOCAL RIGIDITY OF ACTIONS (PRESENTED BYDAVID FISHER)

For more background, references, more information on the questions
raised in this section as well as other interesting questions in this area, the
reader should refer to the survey by Fisher in this volume.

Definition 19.1. A homomorphismi : Γ → D from a finitely generated
groupΓ to a topological groupD is said to belocally rigid if any i′ suffi-
ciently close toi in the compact-open topology is conjugate toi by a small
element ofD.

This is the case for the inclusion of an irreducible cocompact lattice in a
semisimple Lie group with no compact or 3-dimensional factors (Calabi–
Vesentini, Selberg, Weil).

A basic question posed by Zimmer around 1985 is whether one can do
anything of interest if the topological group is the diffeomorphism group
of a compact manifold andΓ is a lattice in a groupG that has no rank-1
factors (for example,G = SL(n, R), G = SL(n, Z) for n ≥ 3). (Katok
and collabarators have studiedΓ = Zd for d ≥ 2 with this in view.) Ben-
veniste showed that every isometric action of a cocompact group is locally
rigid in Diff ∞(M), and shortly thereafter Margulis and Fisher showed that
any isometric action of a groupΓ is locally rigid if the group has proprty
(T) of Kazhdan,i.e., H1(Γ, π) = 0 for every unitary representationπ. In
2004 Fisher proved that one only needsΓ to be finitely presented withH(Γ,
Vect∞(M)) = 0. This applies, for example, toΓ = SL(2, Z

√
2) or, more

generally, any irreducible lattice in a semisimple Lie group without compact
factors and ofR-rank at least 2. Another application are some actions (with
or without nontrivial centralizer) of some cocompact lattices in SU(1, n).

A theorem of Kazhdan asserts that there are cocompact lattices inSU(1, n)
that admit nontrivial homomorphisms toZ, and as an easy consequence any
action of these with connected centralizer has deformations. These defor-
mations are not very interesting, so one can ask.

Question 19.2.Are these the only deformations?

There are cocompact lattices in SO(1, n) with embeddings in SO(n+1),
where the resulting actions onSn has an infinite-dimensional deformation
space. The known deformations do not preserve volume:

Question 19.3.Are there volume-preserving deformations in this situation?
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If Γ is an irreducible lattice in a semisimple Lie groupG that has no
compact factors and is contained in a Lie groupH with a cocompact lattice
Λ thenΓ acts onH/Λ. In many cases these actions are not locally rigid,
such as for lattices in SU(1, n) and in SO(1, n).

Conjecture 19.4. An action of a latticeΓ is locally rigid if there is a map
from G onto a groupG1 that is locally isomorphic to either SO(1, n) or
SU(1, n) and acts on a spaceX in such a way that there is a factorization
of HΛ to X that intertwines the actions ofΓ on H/Λ and X (the latter
induced byΓ ⊂ G1.

This is even open for Anosov actions. A simple linear exampleof these
would be the natural action of SL(2, Z

√
2) onT4 obtained by the linear ac-

tion onR4 of the 2 Galois-conjugate embeddings, which have an invariant
lattice. In the case of Anosov actions this should be an approachable ques-
tion. Crossing the preceding example with the identity on a circle should be
much harder.

20. SMOOTH AND GEOMETRIC RIGIDITY

Conjecture 20.1.A compact negatively curved Riemannian manifold with
C1+zygmundhorospheric foliations is locally symmetric.

It is believed that smooth rigidity of systems with smooth invariant folia-
tions should hold with low regularity. Yet this remains an open issue. There
is some evidence that this is a hard question. For example, investigations of
the Anosov obstruction toC2 foliations [61] made clear that its vanishing
does not have immediate helpful consequences. And the basicbootstrap
[60] does not start atC2.

The invariant subbundlesEu andEs, called theunstableandstablebun-
dles, are alwaysHölder continuous. For Eu this means that there exist
0 < α ≤ 1 and C, δ > 0 such thatdG(Eu(p), Eu(q)) ≤ CdM(p, q)α

wheneverdM(p, q) ≤ δ, wheredG is an appropriate metric on subbun-
dles ofTM . We say thatEu is Cα or α-Hölder; in caseα = 1 we say
Eu is CLip or Lipschitz continuous. A continuous functionf : U → R

on an open setU ⊂ R is said to beZygmund-regularif there isK > 0
such that|f(x + h) + f(x − h) − 2f(x)| ≤ K|h| for all x ∈ U and
sufficiently smallh. To specify a value ofK we may refer to a func-
tion as beingK-Zygmund. The function is said to be“little Zygmund”
if |f(x + h) + f(x − h) − 2f(x)| = o(|h|). Zygmund regularity implies
modulus of continuityO(|x log |x||) and henceH-Hölder continuity for all
H < 1 [139, Theorem (3·4)]. It follows from Lipschitz continuity and
hence from differentiability. Being “little Zygmund” implies having mod-
ulus of continuityo(|x log |x||). For r ∈ N denote byCr,ω the space of
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maps whoserth derivatives have modulus of continuityω. For r > 0 let
Cr = C⌊r⌋,O(xr−⌊r⌋).

For the dependence of the leaves on the base point several slightly differ-
ent definitions are possible. The canonical definition is viathe highest pos-
sible regularity of lamination charts. One may also look into the transverse
regularity ofk-jets. Alternatively, one can examine the holonomy semi-
group, i.e., for pairs of nearby smooth transversals to the lamination one
considers the locally defined map between them that is obtained by “fol-
lowing the leaves”. By transversality this is well-defined,and for smooth
transversals one can discuss the regularity of these maps, which turns out
to be largely independent of the transversals chosen. We adopt this notion
here and refer to it as the regularity of holonomies or (transverse) regularity
of the lamination. There is little difference between thesedefinitions in our
context. Following the discussion in [126] we can summarizethe relation
as follows:

Theorem 20.2([126, Theorem 6.1]). If r ∈ R ∪ {∞}, r /∈ N r {1} then a
foliation with uniformlyCr leaves and holonomies hasCr foliation charts.

However, ifr ∈ N r {1} then a foliation with uniformlyCr leaves and
holonomies need not haveCr foliation charts. The problem are mixed par-
tials. Without assuming uniform regularity the above statements can fail
drastically: There is a foliation with uniformlyC∞ leaves and with (nonuni-
formly) C∞ holonomies that does not have aC1 foliation chart [126, Fig-
ure 9]. In our context the regularity is always uniform, so the above result
implies that one can define regularity equally well via holonomies or folia-
tion charts. The essential ingredient for Theorem 20.2 is

Theorem 20.3([74]). LetM be aC∞ manifold,F u, F s continuous trans-
verse foliations with uniformly smooth leaves,n ∈ N0, α > 0, f : M → R

uniformlyCn+α on leaves ofF u andF s. Thenf is Cn+α.

This leads to the following observation.

Theorem 20.4. If r ∈ R ∪ {∞}, r /∈ N r {1} and the stable and unsta-
ble foliations have uniformlyCr holonomies, then there areCr bifoliation
charts, i.e.,charts that straighten both foliations simultaneously.

Proof. By hypothesis every pointp has a neighborhoodU on which the
inverse[x, y] 7→ (x, y) ∈ W u

ǫ (p) × W s
ǫ (p) of the local product structure

map is uniformlyCr in either entry. By Theorem 20.3 it isCr. �

There is a connection between the regularity of the subbundles and that
of the lamination: For anyr ∈ N ∪ {∞} andα ∈ [0, 1) or “α = Lip” a
foliation tangent to aCr+α subbundle is itselfCr+α [126, Table 1]. (The
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reverse implication holds only forr = ∞ because leaves tangent to aCr

subbundle areCr+1.)
The invariant subbundles are always Hölder continuous. Itshould be

noted, however, that forα < 1 theα-Hölder condition on subbundles does
not imply any regularity of the foliations. Indeed, withouta Lipschitz con-
dition even a one-dimensional subbundle may not be uniquelyintegrable,
so already continuity of the foliation cannot be obtained this way. On the
other hand, there turns out to be a converse connection:

Theorem 20.5([63]). If the holonomies areα-Hölder and individual leaves
areC∞ then the subbundles areβ-Hölder for everyβ < α.

There are variants of this for leaves of finite smoothness andalmost-
everywhere Hölder conditions. Furthermore, whenever bunching-type in-
formation gives a particular degree of regularity for the subbundles, one
can usually get the same regularity for the holonomies, and vice versa.

Conjecture 20.6. If both invariant foliations of an Anosov system areC2

then they are bothC∞.

Bolder variants of this would replaceC2 by C1+Lip, C1+BV , C1+zygmund

(“little Zygmund”) or C1+o(x| log x|), but theC2 version would be spectacular
enough, even in the symplectic case.

Note that such rigidity results can only be expected assuming high regu-
larity of both foliations simultaneously because [62] gives a sufficient con-
dition for one foliation to beC2 that holds for an open set of dynamical
systems.

To prove such results it may be necessary to restrict to the geometric
context, where there are extra ingredients that might help.The leaves are
spheres, and they are “tied together” by the sphere at infinity (ideal bound-
ary) of the universal cover. An important result by Hamenst¨adt [58] should
help substantially as well:

Theorem 20.7. If the horospheric foliations areC2 then the topological
and Liouville entropies of the geodesic flow coincide.

If the Katok entropy conjecture were known this would finish the prob-
lem.

Thus, the following problem remains: By exploiting geometric informa-
tion show that if the horospheric foliations areC2 and the topological and
Liouville entropies of the geodesic flow coincide then the horospheric foli-
ations areC∞ (or Ck for sufficiently largek to invoke the bootstrap [60]).
This leads to a geometric counterpart of Conjecture 20.6.

Conjecture 20.8.A compact negatively curved Riemannian manifold with
C2 horospheric foliations is locally symmetric.
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By [7, 9] this follows from Conjecture 20.6. A related proposal is the fol-
lowing: Give an alternate proof of the Hamenstädt result byshowing that
if the horospheric foliations areC2 then the Jacobian cocycle is cohomolo-
gous to a constant (which implies coincidence of Bowen–Margulis measure
and Liouville measure,i.e., coincidence of topological and Liouville en-
tropy). The reason that this route is interesting to exploreis that it provides
a motivation to return to the Anosov cocycle and investigatewhether it is at
all connected with the Jacobian cocycle in subtle ways.

As noted above, smoothness of invariant structures associated with a hy-
perbolic dynamical system is necessary for smooth conjugacy to an alge-
braic model. There are several important instances where such conditions
are sufficient.

Smoothness of the invariant foliations of a hyperbolic dynamical system
has turned out to be sufficient for smooth conjugacy to an algebraic model
in the symplectic case. For geodesic flows even more can be said. Open
questions concern the precise amount of smoothness needed and possible
conclusions in the absence of symplecticity.

a. Smoothness of the invariant foliations.The most basic result in this
direction is implicit: The proof by Avez [5] that an area-preserving Anosov
diffeomorphism ofT2 is topologically conjugate to an automorphism actu-
ally gives a conjugacy as smooth as the invariant foliations. The definitive
result in this setting is worth giving here, because it is suggestive of the
work yet to be done in higher dimension.

Theorem 20.9([68]). Let f be aC∞ area-preserving Anosov diffeomor-
phism ofT2. Then the invariant subbundles are differentiable and their
first derivatives satisfy the Zygmund condition[139, Section II.3, (3·1)] and
hence have modulus of continuityO(x| logx|) [139, Theorem (3·4)]. There
is a cocycle, the Anosov cocycle, which is a coboundary if andonly if these
derivatives have modulus of continuityo(x| log x|) or, equivalently, satisfy a
“little Zygmund” condition. In this case, or if the derivatives have bounded
variation [54], the invariant foliations areC∞ andf is C∞ conjugate to an
automorphism.

Note the sharp divide between the general and the smoothly rigid sit-
uation. Indeed, the constant definingO(x| log x|) is nonzero a.e. except
when the Anosov cocycle is trivial. Therefore this is the finest possible
dichotomy.

To obtainC∞ foliations it is actually shown first that triviality of the
Anosov cocycle impliesC3 subbundles, and a separate argument then yields
C∞ foliations.
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Following Guysinsky one can explain the Anosov cocycle using local
normal forms. For a smooth area-preserving Anosov diffeomorphism on
T2 deLatte [94] showed that one can find local smooth coordinatesystems
around each point that depend continuously (actuallyC1) on the point and
bring the diffeomorphismf into theMoser normal form[112]

f(x, y) =

(

λ−1
p x/ϕp(xy)
λpyϕp(xy)

)

,

where(x, y) are in local coordinates around a pointp and the expression
on the right is in coordinates aroundf(p). The terms involvingϕp that
depend on the productxy correspond to the natural resonanceλpλ

−1
p = 1

that arises from area-preservation (actually from the family of resonances
λp = λn+1

p λ−n
p ). The functionϕp is as smooth asf , andϕp(0) = 1. Now

we suppress the (continuous) dependence ofλ andϕ on p. Note that for a
point (0, y) we have

Df =

(

λ−1xy(1/ϕ)′(xy) + λ−1/ϕ(xy) λ−1x2(1/ϕ)′(xy)
λy2ϕ′(xy) λxyϕ′(xy) + λϕ(xy)

)

=

(

λ−1 0
λy2ϕ′(0) λ

)

.

In these local coordinates the unstable direction at a point(0, y) on the sta-
ble leaf ofp is spanned by a vector(1, a(y)). Since this subbundle is invari-
ant underDf and sincef(0, y) = (0, λy), the coordinate representation of
Df from above givesa(λy) = λ2y2ϕ′(0) + λ2a(y). If the unstable subbun-
dle isC2 then differentating this relation twice with respect tox at 0 gives
λ2a′′(0) = 2λ2ϕ′(0)+λ2a′′(0), i.e.,ϕ′(0) = 0. This means that the Anosov
obstruction isϕ′(0), whereϕ arises from the nonstationary Moser-deLatte
normal form. (Thus this is also the obstruction toC1 linearization.)

Hurder and Katok verify thatA(p) := ϕ′
p(0) is a cocycle and show that

it is nonzero a.e. unless it is null-cohomologous. (Guysinsky’s result that
C1+BV ⇒ C∞ follows because bounded variation implies differentiability
almost everywhere.)

The work by Hurder and Katok is actually carried out for the weak sub-
bundles of volume-preserving Anosov flows on three-manifolds. In this
situation analogous issues arise relative to the strong subbundles. These
can be worked out with closely related techniques:

Theorem 20.10([46]). Let M be a 3-manifold,ϕ : R × M → M a Ck

volume-preserving Anosov flow. ThenEu ⊕ Es is Zygmund-regular, and
there is an obstruction to higher regularity that can be described geometri-
cally as the curvature of the image of a transversal under a return map. This
obstruction defines the cohomology class of a cocycle, and the following are
equivalent:

(1) The longitudinal KAM-cocycle is a coboundary.
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(2) Eu ⊕ Es is “little Zygmund”.
(3) Eu ⊕ Es is Lipschitz.
(4) Eu ⊕ Es ∈ Ck−1.
(5) ϕ is a suspension or contact flow.

Problem 20.11.Extend this result to higher dimension.

The complications in higher dimension are due in large part to the simple
fact that when the invariant foliations are not one-dimensional there may
be different contraction and expansion rates at any given point. Therefore
a first step in working on this problem would be to assume uniform qua-
siconformality in stable and unstable directions. This hasstrong structural
implications in itself, though (Theorem 16.6, [32, 76, 128]).

Different contraction and expansion rates are responsiblealready for the
fact that in higher dimension the transverse regularity is usually lower than
in the two-dimensional case. Note that the results there never assert higher
regularity for both foliations than in the two-dimensionalarea-preserving
case. If the obstruction vanishes that was used to show optimality of those
results, then the regularity “jumps” up a little, and a further obstruction,
associated with different contraction and expansion rates, may prohibit reg-
ularity C1+O(x| log x|). Only when all those finitely many obstructions vanish
can we haveC1+O(x| log x|). These obstructions are best described in normal
form [55], as is the Anosov cocycle.

To give a sample we show that a “1-2-resonance” produces an obstruction
to C1 foliations. To work with the simplest possible situation consider a
3-dimensional Anosov diffeomorphismf with fixed pointp such that the
eigenvalues0 < λ < µ < 1 < η < ∞ of Dfp satisfyµ = λη. (This
is a variant of the 1-2-resonanceλ1 = λ2

2 for a symplectic system.) Up
to higher-order terms that might arise from higher resonances the normal
form of f at p is f(x, y, z) = (ηx, µy + axz, λz). RepresentingEu along
thez-axis by(1, v1(z), v2(z) gives

Df(0,0,z)(1, v1(z), v2(z)) = (η, az + µv1(z), λv2(z)),

which rescales to(1, az/η + µv1(z)/η, λv2(z)/η). Invariance ofEu there-
fore yields

v1(λz) = az/η + µv1(z)/η.

Differentiating twice with respect toz givesλv′
1(0) = a/η + (µ/η)v′

1(0),
which impliesa = 0 sinceλ = µ/η. Thus the resonance terma in the
normal form is an obstruction toC1 Anosov splitting. (One can verify this
without using normal forms, but the calculation is somewhatlonger.) By the
way, the work of Kanai mentioned below (Subsection 20b) madea rather
stringent curvature pinching assumption to rule out a number of low reso-
nances. The refinements by Feres and Katok that led to an almost complete
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proof of Theorem 20.17 centered on a careful study of the resonances that
might arise without such pinching assumptions. This was delicate work
because the issue are not only resonances at periodic points, but “almost
resonances” between Lyapunov exponents. The papers [39, 37] contain an
impressive development of these ideas.

While there is an analog of the Anosov cocycle in higher dimension, its
vanishing is known to be necessary only forC2 foliations [61] and is not
known to lead to higher regularity of the invariant foliations. Thus it has
not yielded any effective application, and the central portion of the above
approach falls apart.

The bootstrap toC∞ subbundles works in full generality, even without
area-preservation, although it usually starts at regularity higher thanC3 (see
[60, 47]). In other words, once the invariant foliations have a sufficiently
high degree of regularity, they are alwaysC∞.

b. Smooth rigidity. The main issue in higher dimension is to conclude
from smoothness of the invariant foliations that there is a smooth conjugacy
to an algebraic model, and to identify the right algebraic model in the first
place.

A result that appeared after systematic development of the continuous
time situation (see also [7, Theorem 3]) will serve to illustrate this:

Theorem 20.12([8]). Let M be aC∞ manifold with anC∞ affine con-
nection∇, f : M → M a topologically transitive Anosov diffeomorphism
preserving∇ with Eu, Es ∈ C∞. Thenf is C∞ conjugate to an automor-
phism of an infranilmanifold. The invariant connection hypothesis can be
replaced by invariance of a smooth symplectic form.

Note the absence of a topological hypothesis. (There is a finite-smooth-
ness sharpening of this result [38] that does not use the powerful theorem
of Gromov central to the proof by Benoist and Labourie.)

Now we turn to the continuous time case, where these developments are
most significant.

The history begins with the work of Ghys [51], who classified volume-
preserving Anosov flows on 3-manifolds with smooth invariant foliations
into suspensions of hyperbolic automorphisms of the torus and geodesic
flows on surfaces of constant negative curvature (up to finitecoverings) as
well as a new type of flow that differs from the old ones by a special time
change. If the flow is known to be geodesic then the smooth conjugacy
to the constant curvature geodesic flow preserves topological and measure-
theoretic entropies, and hence by entropy rigidity (Subsection 20c, [79])
the original metric is constantly curved. The work towards classification
of flows with smooth invariant foliations has followed this model closely.
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Before describing this, let us mention in passing the secondary issue of
reducing the regularity at which the classification becomespossible. In
the situation of Ghys one can use an analysis of 3-dimensional volume-
preserving Anosov flows and a result entirely analogous to Theorem 20.9
[68] to conclude

Theorem 20.13([51, 68]). A negatively curved metric on a compact surface
is hyperbolic if its horocycle foliations areC1+o(x| log x|).

In higher dimension the seminal work is due to Kanai [78]. He was the
first to implement the following strategy: If one assumes that the invariant
foliations are smooth then one can study Lie bracket relations between the
stable and unstable subbundles. The interaction between these and the dy-
namics can be used to build an invariant connection (named after him now
[91]) and to show that it is flat, which in turn is used to build aLie algebra
structure that is identifiable as a standard model.

He obtained the following result:

Theorem 20.14([78]). The geodesic flow of a strictly 9/4-pinched nega-
tively curved Riemannian metric on a compact manifold is smoothly conju-
gate to the geodesic flow of a hyperbolic manifold if the invariant foliations
areC∞.

Two groups picked up this lead, with the primary aim of removing the
pinching hypothesis, which in particular rules out nonconstantly curved lo-
cally symmetric spaces as models. It also emerged that the main import of
the assumptions is dynamical rather than geometric, and that therefore one
should look for theorems about flows more general than geodesic ones.

Feres and Katok [39, 37] built on Kanai’s idea by refining his arguments
with intricate analyses of resonance cases for Lyapunov exponents to cover
most of the ground in terms of the admissible algebraic models.

Theorem 20.15([37]). Consider a compact Riemannian manifoldM of
negative sectional curvature. Suppose the horospheric foliations are smooth.
If the metric is 1/4-pinched orM has odd dimension then the geodesic flow
is smoothly conjugate to that of a hyperbolic manifold. If the dimension is2
(mod 4) then the geodesic flow is smoothly conjugate to that of a quotient
of complex hyperbolic space.

Some of the results proved along the way to this conclusion did not as-
sume that the flow under consideration is geodesic. The refinements over
Kanai’s work were, in the case of the first hypothesis, a more delicate ar-
gument for vanishing of the curvature of the Kanai connection. Under the
second hypothesis Feres shows that if the Kanai connection is not flat then
the invariant subbundles split further (resonance considerations enter here),
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and a connection associated with this further splitting must be locally ho-
mogeneous.

Roughly simultaneously the complete result about smooth conjugacy was
obtained by Benoist, Foulon and Labourie [7]. Not only does it include all
geodesic flows, but it requires only a contact structure, which turned out to
require substantial additional work. This makes it a propercounterpart of
the three-dimensional result of Ghys:

Theorem 20.16([7]). SupposeΦ is a contact Anosov flow on a compact
manifold of dimension greater than 3, withC∞ Anosov splitting. Then there
is an essentially unique time change and a finite cover on which the flow is
C∞ conjugate to the geodesic flow of a negatively curved manifold.

What enables the authors to give a monolithic proof (as opposed to cov-
ering the various classes of symmetric spaces one by one) is arigidity result
by Gromov [53, 6, 138]. This is the place where substantial regularity is
needed, and on anm-dimensional manifold one can replaceC∞ in hypoth-
esis and conclusion byCk with k ≥ m2 + m + 2. This theorem is invoked
in the first major step of the proof, to produce a homogeneous structure:
The diffeomorphisms of the universal cover that respect thesplitting and
the flow form a Lie group that acts transitively. (Gromov’s theorem pro-
duces this structure on an open dense set, and the Kanai connection is used
to extend it.) Step two determines the structure of this group and its Lie
algebra, and step three develops the dynamics of the group and relates it to
the expected algebraic model.

The Feres–Katok approach needs a slightly different minimal regular-
ity. In fact, if one adds the a posteriori redundant assumption of (nonstrict)
1/4-pinching (or merely strict 4/25-pinching) thenC5 horospheric foliations
always force rigidity [60].

We note an amplified version for the case of geodesic flows in which
the conjugacy conclusion for geodesic flows is replaced by isometry of the
metrics due to a more recent rigidity result by Besson, Courtois and Gallot,
Theorem 20.29.

Theorem 20.17.If the horospheric foliations of a negatively curved com-
pact Riemannian manifold areC∞ then the metric is locally symmetric (up
to isometry).

The above result subsumes several classification steps. First of all, one
obtains an orbit equivalence, which implies coincidence ofthe Lyapunov
cocycles (periodic data). But furthermore, the original result in [7] directly
arrives at a smooth conjugacy, which means that periods of periodic orbits
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are preserved as well. This is an extra collection of moduli for the contin-
uous time case. Finally, in the case of geodesic flows, there is, in addition,
the Besson–Courtois–Gallot Theorem 20.29, which gives theisometry.

While the regularity of the invariant subbundles is usuallysubstantially
lower than in the two-dimensional case, it is widely believed that the mini-
mal regularity for such smooth rigidity results should beC2 or evenC1+Lip,
i.e.,quite close to that in Theorem 20.9. Indeed, these foliations are hardly
everC1+Lip:

Theorem 20.18.For an open dense set ofsymplecticAnosov systems the
regularity predicted by computingBu only from periodic points is not ex-
ceeded (i.e., if the rates compare badly at a single periodic point then the
regularity is correspondingly low—at that periodic point)[62]. An open
dense set of Riemannian metrics do not haveC1+Lip horospheric foliations
[62].

Furthermore, for anyǫ > 0 there is an open set of symplectic Anosov
diffeomorphisms for which the subbundles and holonomies are Cǫ at most
on a (Lebesgue) null set[63].

If the invariant subbundles areC2 then the Liouville measure coincides
with the Bowen–Margulis measure of maximal entropy [58, 91]. (For Finsler
metrics this is false [117].) According to the Katok EntropyRigidity Con-
jecture (Subsection 20c), this should imply that the manifold is locally sym-
metric. Optimists might suspect that rigidity already appears fromC1+o(x| log x|)

or C1+zygmund on, but there is no evidence to that effect (save for Theo-
rem 20.18).

Another result of Ursula Hamenstädt is worth remarking on here. It says
that for contact Anosov flows withC1 invariant foliations fixing the time
parametrization fixes all other moduli of smooth conjugacy.

Theorem 20.19([57]). If two conjugate (not just orbit equivalent) Anosov
flows both haveC1 Anosov splitting and preserve aC2 contact form then
the conjugacy isC2.

TheC1 assumption on the splitting is not vacuous, but not stringent ei-
ther, being satisfied by an open set of systems. Note that the conjugacy
preserves both Lebesgue and Bowen–Margulis measure. If onekeeps in
mind that smooth conjugacy has been established mainly withone side be-
ing algebraic, this result is striking in its generality.

Inasmuch as they refer to flows, the hypotheses of the preceding rigidity
results do not distinguish between the regularity of the strong versus weak
invariant foliations. The reason is that for geodesic flows strong and weak
foliations have the same regularity due to the invariant contact structure:
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The strong subbundles are obtained from the weak ones by intersecting with
the kernel of the smooth canonical contact form.

Plante [121] showed that the strong foliations may persistently fail to
beC1, namely when the asymptotic cycle of volume measure is nonzero.
Even though the latter is not the case for (noncontact) perturbations of ge-
odesic flows, these flows may still fail to haveC1 strong foliations (see
[116, 11], where the contact form is “twisted” by an extra “magnetic force
term”, which does not produce a nontrivial asymptotic cycle).

c. Entropy rigidity. A different rigidity conjecture was put forward by
Katok in a paper that proved it for surfaces [79].

The result that prompted the conjecture is

Theorem 20.20([79]). For the geodesic flow of a unit-area Riemannian
metric without focal points on a surface of negative Euler characteristicE
the Liouville and topological entropies lie on either side of

√
−2πE, with

equality (on either side) only for constantly curved metrics.

Conjecture 20.21([79, p. 347]). Liouville measure has maximal entropy
only for locally symmetric metrics,i.e.,only in these cases do the topologi-
cal and Liouville entropies agree.

One can restate this as saying that equivalence of Bowen–Margulis and
Lebesgue measure only occurs for locally symmetric spaces.This con-
jecture has engendered an enormous amount of activity and remains unre-
solved. The exact nature of the results in [79] suggests somevariants of this
conjecture, however, that have been adressed more successfully.

Theorem 20.22([44]). The conjecture holds locally along one-parameter
perturbations of constantly curved metrics, but in dimension 3 it is no longer
the case that a hyperbolic metric (with unit volume) maximizes Liouville en-
tropy.

The Katok entropy rigidity conjecture cannot take quite so neat a form
as it does for surfaces. Foulon notes that for flows in dimension three it
extends beyond the realm of geodesic flows:

Theorem 20.23([45]). A smooth contact Anosov flow on a three-manifold
whose topological and Liouville entropies coincide is, up to finite covers,
conjugate to the geodesic flow of a constantly curved compactsurface.

Conjecture 20.24(Foulon). Three-dimensionalC∞ Anosov flows for which
Bowen–Margulis and Lebesgue measure are equivalent must beC∞ conju-
gate to either a suspension of a toral automorphism or the geodesic flow of
a compact hyperbolic surface.
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That a metric is locally symmetric has been proved under a stronger but
suggestive hypothesis [97]. Consider the universal coverM of the manifold
in question and for eachx ∈ M define a measureλx on the sphere at infinity
by projecting the Lebesgue measure on the sphereSxM along geodesics
starting atx (Lebesgue or visibility measure). Use a construction of the
(Bowen–)Margulis measure [104] to define measuresνx on the sphere at
infinity [56].

Theorem 20.25.If there is a constanta such thatλx = aνx for all x then
M is symmetric.

Proof. By [96, 137] it is asymptotically harmonic, and by [47] and Theo-
rem 20.29 below it is symmetric. �

In fact, one can also define aharmonicmeasureηx at infinity for every
x ∈ M by using Brownian motion.

Theorem 20.26([95, 81]). In the case of surfaces the harmonic measure
class coincides with the Lebesgue class only when the curvature is constant.

Conjecture 20.27(The “Sullivan conjecture”, [131, p. 724]). In higher
dimension the coincidence of the harmonic and visibility measure classes
happens only for locally symmetric spaces.

Theorem 20.28.If any two of these three measures here defined are pro-
portional for everyx thenM is symmetric.

Proof. This again follows from [96, 137, 47, 9]. �

The goal can be restated as the requirement to relax the hypothesis from
proportionality to mutual absolute continuity [97].

Coming from rather a different direction, Besson, Courtoisand Gallot
found themselves addressing a related issue by showing thattopological
entropy is minimized only by locally symmetric metrics. Strictly speaking,
their result concerns the volume growth entropyh of a compact Riemannian
manifold, which is the exponential growth rate of the volumeof a ball in
the universal cover as a function of the radius. This is a lower bound for
the topological entropy of the geodesic flow with equality ifthe sectional
curvature is nonpositive [103] (in fact, when there are no conjugate points
[50]).

Theorem 20.29([9]). Let X, Y be compact oriented connectedn-dimen-
sional manifolds,f : Y → X continuous of nonzero degree. Ifg0 is a
negatively curved locally symmetric metric onX then every metricg onY
satisfieshn(Y, g) Vol(Y, g) ≥ | deg(f)|hn(X, g0) Vol(X, g0) and forn ≥ 3
equality occurs iff(Y, g) is locally symmetric (of the same type as(X, g0))
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andf is homotopic to a homothetic covering(Y, g) → (X, g0). In partic-
ular, locally symmetric spaces minimize entropy when the volume is pre-
scribed.

A version of this result holds for nonpositively curved locally symmetric
spaces of rank 1, and one may ask whether their method extendsto higher
rank.

A complementary result, about leaving the realm of geodesicflows, is
contained in the work [118] of the brothers Paternain: “Twisting” any Anosov
geodesic flow (by adding a “magnetic” term to the Hamiltonian) strictly de-
creases topological entropy.

21. QUANTITATIVE SYMPLECTIC GEOMETRY (HELMUT HOFER)

Denote by Symp2n the category of2n-dimensional symplectic mani-
folds with embeddings serving as the morphisms. This carries the action
of (0,∞) by rescaling:α∗(M, ω) = (M, αω). Consider a subcategoryC
that is invariant under this action and[0,∞] with the standard ordering (on
which one has the same action). We do not require it to be a fullsubcate-
gory.

Definition 21.1. A (generalized) symplectic capacityfor C is an equivariant
functorc : C → [0,∞] with the property thatc((M, ω)) > 0 if M 6= ∅. For
1 ≤ d ≤ n a d-capacityis a capacity such that0 < c(B2d × R2n−2d) < ∞
andc(B2d−2 × R2n−2d+2) = ∞, whereBd denotes the open unit ball inRd

d-ball.

An example of an-capacity is

c(M, ω) :=
(

∫

M

ωn
)1/n

.

Let B2n(a) denote the ball of radius(a/π)1/2 and defineZ2n(a) = B2(a)×
R2n−2 We putB2d = B2d(1) and similarlyZ2d = Z2d(1). Gromov’s non-
squeezing result implies the existence of 1-capacities. IfB2n(a) symplecti-
cally embeds intoZ2n(b) thena ≤ b. Therefore one can take

cB2n(M, ω) := sup{a | (B2n, aω) symplectically embeds into(M, ω)}
or

cZ2n

(M, ω) := inf{a | (M, ω) symplectically embeds into(Z2n, aω)}.
In fact, there are many 1-capacities one can construct from Floer theory,
Gromov–Witten theory, symplectic field theory or contact homology, and
many questions in symplectic geometry can be answered by constructing
such a functor. No example of ad-capacity for1 < d < n is known.
Therefore it is important to ask
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Question 21.2.Are thered-capacities ford other than 1 andn in dimension
2n, wheren ≥ 3?

This is a fundamental question about the nature of symplectic geometry.
Clearly then-capacities are volume-related invariants and 1-capacities are
invariants of a 2-dimensional kind related to 2-dimensional cross-sections.
The essence of Question 21.2 is captured by the next questionconcerned
with dimension six.

Question 21.3. Is there anǫ > 0 such that for everyr > 0 there is a
symplectic embedding ofB2(ǫ) × B4(r) into B4(1) × R2?

If the answer is “no” it means that in dimension six a2-capacity exists,
and in this case it is very likely that a proof has to be based onsome “new
symplectic technology”.

The next question is exploring the problem if in some sense the technol-
ogy to deal with symplectic geometry in dimension four is complete. Given
a positive quadratic formQ defineEQ := {Q < 1} ⊂ R2n to be the as-
sociated ellipsoid. Then there is a uniquea ∈ Σ := {a ∈ (0,∞)n | a1 ≤
a2 ≤ · · · ≤ an} such thatE is by a linear symplectic map the same as the
ellipsoidE(a) := {x = (z1, . . . , zn) ∈ R2n | ∑ |zi|2/ai < 1}.

OnΣ define a “linear” partial ordering≤l by a ≤l b:⇔ there exists a lin-
ear symplectic mapT such thatT (E(a)) ⊂ E(b). By some linear algebra
this order structure is the same as requiringai ≤ bi for all i. Define a “non-
linear” partial ordering≤nl by a ≤nl b:⇔ there is a symplectic embedding
of E(a) into E(b). It is a nontrivial result (due to Ekeland and Hofer) that
on the set of points “between”(1, . . . , 1) and(2, . . . , 2) these two orderings
are the same, but this fails on any larger set (Lalonde and McDuff for n = 2,
Schlenk in general).

Consider capacities on ellipsoids and fora ∈ Σ order the numbers{jai |
j ∈ N, i = 1, . . . , n} by size with multiplicities and denote this sequence
by ck(a) (If a = (1, 5) we get 1 2 3 4 5 5 6 7 8 9 10 10. . . .). These are
capacities for eachk (and are due to Ekeland and Hofer).

Question 21.4.Is a ≤nl b in R4 equivalent tock(a) ≤ ck(b) for all k and
a1a2 ≤ b1b2 (this is the volume constraint)?

If the answer is indeed “yes” a proof can be expected to be veryhard.
Particular cases of this question are:

Question 21.5.Is (1, 8) ≤nl (3, 3)? Is (1, 4) ≤nl (2, 2)?

Schlenk can symplectically embed

E(1, 8) → E(3.612, 3.612) andE(1, 4) → E(2.692, 2.692).
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Observe thatE(1, 4) andE(2, 2) have the same volume, so an embedding
will be very tight.

In general, consider a symplectic categoryC and denote the collection of
capacities on it byS. Then one can generate new ones. Consider a function
f : [0,∞]n → [0,∞] with f(1, . . . , 1) > 0 that is positively 1-homogeneous
(f(ta) = tf(a)) and monotone (ifai ≤ bi thenf(a) ≤ f(b)). Then, given
capacitiesc1, . . . , cn ∈ S we get a new capacityf(c1, . . . , cn). Also, if
ck → c ask → ∞ and c(B2n) > 0 then c is a capacity as well. The
following is essentially a rephrasing of Question 21.4.

Question 21.6.Do theck defined above together with(
∫

ω2)1/2 generateS
in this way?

22. HILBERT’ S 16TH PROBLEM (PRESENTED BYYULIJ ILYASHENKO)

Question 22.1(Hilbert’s 16th Problem). What can be said about the num-
ber and location of the limit cycles of a polynomial ordinarydifferential
equation in the plane?

This has been among the most persistent in Hilbert’s list, and therefore
even simplified versions make for substantial problems:

Question 22.2(Hilbert’s 16th Problem for quadratic polynomials). What
can be said about the number and location of the limit cycles of an ordi-
nary differential equation in the plane whose right-hand side is a quadratic
polynomial?

This question remains unresolved as well. There are partialresults by
Ilyashenko and Llibre of the following type. For a Zariski-open set of qua-
dratic vector fields one can define a numerical characteristic of each vector
field and then bound the number of limit cycles in terms of thisparameter.

Numerous related problems may be found in the survey [69]

23. FOLIATIONS (PRESENTED BYSTEVEN HURDER)

Consider a compact manifoldM with a foliationF .

Question 23.1.Can a leafL in a minimal setZ ⊂ M of the foliation be
deformed? Or can the minimal set be deformed?

Reeb showed that if there is a compact leaf with trivial holonomy (i.e.,
only the identity) then it has a foliated neighborhood that is a product,i.e.,
the situation is far from rigid. On the other hand, results byStowe show that
if there is enough cohomology data then one cannot move the leaf.

Question 23.2.If Z is a minimal set inM , are all leaves inZ diffeomorphic
up to covers?
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Duminy proved in 1982 that if the foliation isC2 with codimension 1
leaves andZ is exceptional (i.e.,neitherM nor a single leaf) then all leaves
in Z have Cantor ends.

24. “FAT” SELF-SIMILAR SETS (MARK POLLICOTT)

A similarityonRd is a mapT : Rd → Rd for which‖T (x, y)−T (u, v)‖ =
r‖(x, y) − (u, v)‖, where0 < r < 1 and ‖ · ‖ is the Euclidean norm.
Given similaritiesT1, . . . , Tn : Rd → Rd a setΛ is said to beself-similar
if Λ =

⋃n
i=1 Ti(Λ). One may ask how “big” such sets can be, for exam-

ple, how close tod the Hausdorff dimension can be, whether they can have
positive Lebesgue measure or open interior.

In the case thatd = 2, there are examples of self-similar sets with empty
interior and positive Lebesgue measure (this is due to Csörnyei, Jordan,
Pollicott, Preiss and Solomyak [22] and answers a question of Peres and
Solomyak [119]). The construction uses 10 contractions (all by a factor
of 3), but there is some latitude in how the similarities are chosen, and a
different construction accomplishes the same result using6 similarities.

Question 24.1.Can one find examples using fewer similarities?

It is interesting to note that there are apparently no analogous results
whend = 1.

Question 24.2.Are the examples of self similar sets with positive measure
but empty interior inR?

Easier results are obtained from Sierpinski triangles. If1/2 < λ < 1 the
similarities

T0(x, y) = (λx, λy) + (0, 0)

T1(x, y) = (λx, λy) + (1/2, 0)

T2(x, y) = (λx, λy) + (0, 1/2)

produce “fat” Sierpinski trianglesΛλ (the caseλ = 1/2 gives the standard
Sierpinski triangle).

It is easy to check that when0 < λ < 1/2 one obtains a Cantor set with

dimH(Λλ) = − log 3

log λ
.

Theorem 24.3(Jordan [72]). dimH(Λλ) = − log 3

log λ
for a.e.λ ∈ [1/2, (4/3)1/3].

There is a dense setD ⊂ [1/2, 1/
√

3] such thatdimH(Λλ) < −log 3/log λ
for λ ∈ D. One of the most interesting remaining questions is the follow-
ing.
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Question 24.4.How large is the exceptional setD? Is it uncountable?
Does it have nonzero Hausdorff dimension?

Let m be thed-dimensional Lebesgue measure.

Theorem 24.5(Jordan–Pollicott [73], Broomhead–Montaldi–Sidorov[15]).
m(Λλ) > 0 for a.e. λ ∈ [0.585 . . . , 0.647 . . . ] and int(Λλ) 6= ∅ for λ >
.647 . . . .

This suggests two natural questions.

Question 24.6.What is the largest value ofλ such thatΛλ has empty inte-
rior?

Sidorov conjectures that the correct value is the reciprocal of the golden
ratio.

Question 24.7.Is there anyλ ∈ [0.585 . . . , 0.647 . . . ] for which int(Λλ) =
∅ andm(Λλ) > 0?
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[74] Jean-Lin Journé:A regularity lemma for functions of several variables, Revista
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2 (Zürich, 1994), 1195–1202, Birkhäuser, Basel, 1995
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matical Journal,86 (1997), no. 3, 517–546

[127] Daniel Rudolph:×2 and×3 invariant measures and entropy. Ergodic Theory Dy-
nam. Systems 10 (1990), no. 2, 395–406

[128] Victoria Sadovskaya:On uniformly quasiconformal Anosov systems, Mathematical
Research Letters12 (2005), 425–441

[129] Richard Evan Schwartz:Obtuse Triangular Billiards III: 100 Degrees Worth of Pe-
riodic Trajectories, preprint 2005. See alsoObtuse Triangular Billiards I: Near the
(2, 3, 6) Triangle, Journal of Experimental Mathematics, to appear, andObtuse Tri-
angular Billiards II: Near the Degenerate (2, 2,1) Triangle, preprint 2005

[130] Steven Smale:Mathematical problems for the next century. In Mathematics: fron-
tiers and perspectives, 271-294. Amer. Math. Soc., Providence, RI, 2000.



52 BORIS HASSELBLATT

[131] Dennis Sullivan:The Dirichlet problem at infinity for a negatively curved manifold,
Journal of Differential Geometry18 (1983), no. 4, 723–732
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