RANDOM PERTURBATIONS OF TRANSFORMATIONS
OF ANINTERVAL

By
A. KATOK AND Y. KIFER

Abstract. Let 1° be invariant measures of the Markov chains x; which are small
random perturbations of an endomorphism f of the interval [0, 1] satisfying the
conditions of Misiurewicz [6]. It is shown here that in the ergodic case u° converges
as € — 0 to the smooth f-invariant measure which exists according to [6]. This result
exhibits the first, example of stability with respect to random perturbations while
stability with respect to deterministic perturbations does not take place.

0. Introduction

Let f be a C* map of the interval I =[0,1] into itself. Consider a family of
probability measures Q° (x, dy) on I given for every x € I and &£ > 0 small enough.
Define the Markov chain x%, n =0,1,... in the following way: if x, = x then x..,
has distribution Q°(fx,dy). The Markov chains x; are called small random
perturbations of the transformation f if for each continuous function h on I,

0.1) lim sup

e—0 xel

[ o' aymen-nw| =0,

where we shall consider the interval I both with the identification of endpoints and
without it.

We shall say that a probability measure p* on I is an invariant measure of the
Markov chain x;, if for any Borel set T'C I,

0.2) [ we@npr = urm
where
0.3) P (x,I)=Q*(fx,I).

It follows easily from (0.1)-(0.3) (see [5]) that if x° are invariant measures of
small random perturbations x; of the transformation f and

(0.4) p%— u inthe weak sense (u“ —> g ) for some subsequence g — 0

then p is an invariant measure of the map f, i.e. for any Borel set I'C I,

0.5) p(f7'T)= p(D).
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If the limit measure u in (0.4) is the same for any subsequence & — 0 then it is
said to be stable with respect to random perturbations.

We shall study here the limit behaviour of the measures . in the case of maps f
satisfying the conditions of Misiurewicz [6], i.e. having non-positive Schwarzian
derivative, no sinks and trajectories of critical points stay away from critical points.
These mappings f possess absolutely continuous invariant measures (see {6]). For
the most widely considered one-parameter family of maps x —4Ax(1—x) the
conditions of {6} are satisfied for a set of parameters A having cardinality of the
continuum.

We shall prove in this paper that if the transformation f, (x) = 4Ax (1 — x) satisfies
the conditions of [6] and it is ergodic with respect to its absolutely continuous
invariant measure u, then the limit measure in (0.4) is always pu, for a wide class of
random perturbations. The proof follows the lines of [5] with modifications due to
the fact that our transformation is not uniformly hyperbolic. The exact conditions
on perturbations will be discussed in the next section. Still, we remark here that the
following is a particular case of our model. Let A;, A, ... be independent random
variables with the same distribution having a smooth density concentrated on
{—1,1]. Suppose that X is a parameter such that 3<A <1 and the
map x — 4Ax (1 — x) satisfies the conditions of [6] mentioned above. Then for
£ <1-A the composition of independent random transformations fi+e, fisens,. .
generates a Markov chain

£ - - . . -
xn_fA+eAn° : °fA+eA1x

which belongs to the class of random perturbations of f; satisfying our conditions.
The case of A =1 must be treated in a slightly modified way.

The stability of measures u, with respect to random perturbations is especially
interesting in view of the fact that in general there is no stability with respect to
deterministic perturbations in this case. Indeed, consider the family of transforma-
tions f, (x)=4Ax(1— x) with A close to 1. Clearly, fi(x) satisfies the conditions of
[6] and it has absolutely continuous invariant measure with the density

p(x)=— (x(1-x)) ™

with respect to the Lebesgue measure on [0,1]. Define n, = min{n > 1: fi¢)=3}.
Since f7(3) = 0 for all n > 1 then if f,’(3) >} by the continuity one can find 8(A) such
that 1> B(A)> A and fgu,()=3. Therefore.; is a periodic point of fs,, and the
corresponding periodic orbit is an attracting one since fi(G) =0 for any A.
Hence we have found a sequence A, 11 such that any f,, has an attracting
periodic orbit containing 3 and only one point of this orbit can be to the right of .
The invariant measure v,, supported by this periodic orbit is stable with respect to
random perturbations since the complement of the basin of this periodic orbit has
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zero Lebesgue measure (see [3], Proposition II. 5.7). On the other hand, these
measures », do not converge as A, — 1 to the smooth invariant measure of f; since
these periodic orbits have only one point to the right of ; and so all weak limits of
the corresponding invariant measures have support in the interval [0,3].

One can assign to any random perturbation some point of the coordinate plane
where the x-coordinate measures the deterministic part of the perturbation and the
y-coordinate measures the random part of the perturbation. In this setting our
results can be interpreted in the way that when perturbations approach zero along
any straight line passing through zero except the x-axis then invariant measures of
perturbations weakly converge to the corresponding absolutely continuous meas-
ure g;. On the other hand, if perturbations approach zero along a curve which is
close enough to the x-axis then the convergence may not take place.

Since computer experiments are always subject to random errors our approach
may explain why computations show whole subintervals of parameters A without
attracting orbits of the maps f,, i.e. exhibiting the behaviour as if the characteristic
exponent of f, is positive.

We shall prove our results for the one parameter family of transformations
fi (x)=4Ax(1— x). The reader can easily check that all arguments go on for more
general one parameter families of transformations of an interval of the type
considered in §7 of [6]. These should be a family {f. }.ep.1) of unimodal maps of an
interval with negative Schwartzian derivative having no sinks and the critical point
should not belong to the closure of the set of its images under f5, i =1,2,....

Since this paper was first written we have received the manuscrint of Collet [2]
which has another model of random perturbations of transformations of an interval
which is a partial case of our scheme. Actually, the same model appeared earlier in
{1] for the case of random perturbations of Lasota-Yorke type expanding
transformations. In this model one makes the rather strong assumption that the
density q:(y) of the distribution Q¢ (x, dy) depends only on the difference y — x, i.e.
it is translation invariant. Apart from the obvious reason that this type of
perturbation cannot be considered, in general, in the case of dynamical systems on
manifolds, the model in question does not include also the case of random
perturbations of the parameter A in f, which we have discussed above. The
translation invariance of qi(y)=4q°(y —x) enables one to consider the
Perron-Frobenius operator corresponding to the transition probability of the
Markov chain x; which turns out to be in this case just the convolution of ¢° with
the Perron-Frobenius operator of the map f, itself. This simplifies the proof
enormously since instead of studying the dynamics of the Markov chain x which is
necessary in our case, it suffices to establish some properties of the
Perron-Frobenius operator similarly to the proof of existence of a smooth invariant
measure for a map f,.

It seems that our proof with some additional work can be carried out for the
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maps satisfying Jacobson’s conditions (see [4]) which hold for the set of parameters
A of positive Lebesgue measure. On the other hand, it is not clear whether our
theorem has any connection to the fact that the parameters A for which f, satisfies
Misiurewicz conditions are points of Lebesgue density one for the set of parameters
producing maps with Jacobson’s conditions and so having absolutely continuous
invariant measures (see [4]).

The general ideas of this paper were discussed by the authors in July 1983 at the
University of Maryland when both authors were supported by N.S.F. Grant
MCS82-04024. The preliminary version was revised in Spring of 1984 while both
authors were visiting the Mathematical Sciences Research Institute at Berkeley.

1. Assumptions and main results
Consider a family of non-negative functions
{r(€),x€I=[0,1], §ER" = (—o,®)}

satisfying the following Assumption A:
(i) Son()dé=1.

(ii) There exists C,, a; >0 independent of x such that
(1.1) 1 (&)= Coe ™.

(iii) There exists C, >0 such that if

Vi={&rn(6)>0}

then for any x,y €I, £ € V; and 5 € V; one has
(1.2) () rmI= Cllx—y|+|E= 7).

(iv) There exists C, > 0 independent of x such that if

dV1(8)is a 8-neighborhood in R' of the boundary 4V of V;

then

(1.3) j r.(£)d¢E = G5

aV(8)

for any 6 >0, and if r,(¢)#0 but r,(n)=0 then
(1.4) En€VIC(x—yl+]E—n])

provided x and y are close enough to each other.

In fact, for the proof of Proposition 3.1 which we shall give in the Appendix, we
shall need the following condition which is stronger than (1.3). It seems that this
condition is not necessary for the truth of Proposition 3.1 so we add it with some
reservations.
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(v) For each x € I the number of points of discontinuity of r, (£) in £ is bounded
by a number N independent of x and on each interval of continuity r.(§) is
Lipschitz continuous in £ with the constant C,.

The conditions (iii) and (iv) enable us to consider the functions r,(£) with
compact supports V; having discontinuity on V. Nevertheless the condition (iv)
requires that the domains V; depend on x in a continuous manner. In particular,
r. (¢) can be the density of the uniform distribution on some interval depending on
x, or in the simplest case, independent of x, say (—1,1).

For the sake of simplicity we shall consider only quadratic maps

(L.5) f(x)=4Aax(1—x).
Define
(1.6) T=U fi0).

Throughout this paper we assume that the probability distributions Q°(x, dy)
have densities q:(y) with respect to the Lebesgue measure, i.e., for any Borel set
rci

a.7) Q°(x,I= f q:(y)dy.
o4
We suppose also that for some positive a.<1 and any x €[¢™,1—&%],
(1.8) GM=A+e2)e'r, (L;—J-c> provided |y —x|= e™.

The assumptions on q5(y) for |x| < e or |1 — x| < ™ will depend on the type of
boundary conditions we shall accept.

For the sake of simplicity we shall consider in this paper only periodic boundary
conditions, i.e. we shall identify the end points 0 and 1. This means that we assume
(1.8) to be true for any x € I and

(19)  qi(y)=1+e%)e'r (Y—_—;‘i‘-) provided |y —x +1|=&*,

where plus and minus in the last inequality corresponds to plus and minus in the
first one, respectively.
For x,y € I define

(1.10) dist(x, y)=min(Jy — x|,|]y —x +1|,]y —x = 1]).
We assume also that
(L11) qi)sexp (- Ldist(xy))

if dist(x,y)>&* and ¢ >0 is small enough.
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Remark 1.1. Another boundary condition which can be treated by our
method and for which the Theorem below remains true is the reflection condition in
the endpoints 0 and 1. This means that (1.8) remains the same for either
xE[e®,1-e™]orx<e“and yZx,orx>1-¢%and y =x. Butif x <&™ and
y < x then one assumes

_ -1
(1.12) eq:(y) (r, (yg—x)+rx (_ﬁi%}’_))) =l4+¢°
and if x >1—¢* and y > x then
— — -1
(1.13) £q5(y) (rx (18—") +r, (g—i’é—tﬂ» =1+e".

In this case (1.11) should be replaced by

(1.149) a:)=exp (- 21y -x|)

if |y—x|>¢e™ and £ >0 is small enough.
For the case of quadratic maps of the form (1.8) Misiurewicz [6] proved that if f;
has no stable periodic orbit and

(1.15) -0

with 7, defined by (1.16) then f, has exactly one absolutely continuous invariant
measure pu, which is ergodic.
Now we can state our main result

Theorem. Suppose that (1.7)-(1.9), (1.11) and Assumption A are satisfied.
Assume the transformation f, has the form (1.5), has no stable periodic orbit and
(1.15) is true. If u* is an invariant measure of the Markov chain x:, defined in the
Introduction then

(1.16) po——p,  ase—0,

where p;, is the absolutely continuous invariant measure of f,.

2. Auxiliary lemmas about the transformations f,

The following result was proved in Theorem 1.3 of [6].

Lemma 2.1. Assume f, has the form (1.8), has no stable periodic orbit and
(1.15) is true. Then for any p >0 there exists M, >0 such that if

2.1 Ifix—3|=Zp  foralli=0,1,...,M,—1

then
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22) AICIES
for some y,>1 independent of x and p.

We shall need also the assertion which is complementary to the above lemma. Its
proof was communicated to us by M. Misiurewicz.

Lemma 2.2. For any 8 >0 there exists ¢, bounded away from 0 if § > § >0
for some & >0, such that if x €I and

(2.3) dist(fix, 7,)= 8
then
24) [(FY(x)| = esyt

for any n =1, where y,>1 is independent of x, 8 and n.

Proof. Fix p,> 0 small enough. Let y, = fix»and iy <---<i, be the numbers
when y, € U,,“(%) and f, =min{l > i;: v& UP(.(fiﬂ’Al(%))}. Then

@2.5) R TNEE

for some v, > 1 independent of x and j, provided p, was chosen small enough, and
where () denotes differentiation. Indeed

(2.6) iyl =8A 3=y, |
and
(2.7) dist(y,+1, f@) =4A 31—y, |-

Then it is easy to see that, for some c¢;> 0 independent of j,
s -1y, _ -
Z|( T Ve ZC
On the other hand, by Lemma 2.1,

2.9) dist(yyr, frG) 2 C3' 727" dist(yyn, fo )

(2.8) C.

1
3TY;

A

for all [=1,...,i =i where C.>0 and %.>1. Therefore (i — i) is of order

log|s—y,|™" and so (2.8) implies (2.5).
To consider the trajectory between the times i; and i, we shall use the following
assertion:
if |[fiy —3|>|y—3lfori=1,...,m—1land|fly —3|=|y -3
(2.10) then [(fX)(y)| 2 v7
for some ;> 1 independent of y and m. In particular, if |fiy —3|=|y —3| then
)2 75

Before proving this statement we shall use it for the proof of our lemma.
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Since y, & U, G)for I =0,... i~ i—~landy,, € U, (3) one can partition the
trajectory ., [ =O,...,i,~+1—x",~ into the pieces such that the last point in each
piece will be closer to 5 than the first one, and all intermediate points will be farther
from ; than the first point. Hence applying the assertion (2.10) we shall get

@1 Ifbyopz v
The same argument is valid for the trajectory yo, ¥1,..., ¥, and so
2.12) [(FY)] = v3'

Consider the last piece of the trajectory yi,..., y». If n > i then we use (2.5)
with j = k and Lemma 2.1 for bey.onyn tO get

2.13) (Y )I=Cly™ for some Ci>0

since yi € U, (), 1=0,...,n.
If i, <n =i, then we shall use the arguments similar to the beginning of the
proof taking into account (2.3). Then one can see that for some C,>0,

n—i,

(2.14) X Yotz Cs =yl ™
On the other hand, by (2.9), there is Cs>0,

TPt |

(2.15) 8= C5'y: * iyl

since n = f,. Now (2.14) and (2.15) yield

iy

(2.16) [(Fx Y= C5'8(72%) " with Co= 84°C,C.

Finally, collecting (2.5), (2.11)~(2.13) and (2.16) we obtain (2.4).

Now let us return to the assertion (2.10). First, if (2.10) is true then there exist two
periodic points p, and p, having period m and so that p.=y=p.or p.=y'=p;
where |y —3| =|y'—3|. This is proved in Lemma I1.5.6. of [3).

The negative Schwarzian derivative yields that

(2.17) |EY P =YW= SR (p2)]

or, alternatively, that both inequalities are in the opposite direction.
Now it remains to show that there exists y, > 1 such that for any periodic point y
having a period !

(2.18) CAIERZ

The proof is by induction. If f,y& U, ()for all i =0,..., I then we apply Lemma
2.1 to get (2.18) if | is big enough. If | = I, then there exists only a bounded number
of such periodic trajectories and all of them are sources. So one can choose v, > 1
to satisfy (2.18).

If fiyeU,(E)andso f)'y € U, (2) then one can partition the whole trajectory
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into pieces in the same way as at the beginning of the proof of this lemma with x
replaced by y. Now we repeat the beginning of the proof using the assertion (2.10)
for the pieces of the trajectory y;, ..., y;.. with x replaced by y. Since . — i<l
then we shall need the inequality (2.18) for periodic orbits with periods less than I
that completes the proof by induction.

We shall need a version of the shadowing property.

Lemma 2.3. Suppose that f, of the form (1.5) has no stable periodic orbit and
satisfies (1.15). Let xo, ..., X, be an £”-pseudo-orbit of f,, i.e.

(2.19) djst(foi,xi+1)§ Ea, l =0,...,n_’1

where dist is defined by (1.10) and & >0 is small enough.
There exists Cs>0 depending only on f, such that if 0= = a/2 and

(2.20) |x; —3|=2Cse®, i=0,....n

then one can find a point y € I so that

2.21) dist(fiy, x)= Cee®™®,  i=0,...,n
Proof. Let
(222) pPo= diSt(%, gx ),

then one can pick p; <3p, such that
AUz ()N Uy, ) =D
Let i,<---<i be such that x, €U, (), j=1,...,k and
EU, 0 i1, j=1,...k

Put also ib=0 and i, =n

First, Lemma 2.1 enables us to employ the standard argument yielding the
shadowing in the expanding case for pieces Xi.,...,X;., of the pseudo-orbit to
conclude that there exists C, > 0 independent of the pseudo-orbit x,,...,x. and
some points y;, j =0,..., k such that

(2.23) dist(x,.1, foy,)= C, &”

forall I=1,...,i,~i and j=0,...,k

Indeed, if ¢ is small enough then by (2.19) it follows that if x;& U,) for
i=1+1,...,1+Mspu—1 then fix, € Uspua) for ¢ =1,..., Ma,s— 1. Using this
argument and Lemma 2.1 one can see easily that one of preimages in [
satisfies (2.23).

Next, we shall prove that there exists a point y € f;i“y,‘ satisfying (2.21).

By (2.19) and (2.23) it follows that
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(2.24) dist(fux,, fuy;) = (C,,+ 1)e™.
Put r; = x, —3, then fix, = A —4Ar; and so by (2.24),

2 () o

4Ay;(1—y;)=A—4Arj+q. ¢

with
)
lq. | = C,,+1.
Therefore one can take
(l')sa 12
(2.25) y =141 (1 '9_41&) .

Since |r,|Z2C.e” and 2B = @, then by (2.23) if Cs is chosen big enough,

=i

(2.26) dist(y;, fi "'y = é,,gi—j—l
1

for some C,,>0 independent of ¢, j and the points {x;} and {y;}.
Since | r;| Z2C.e® then for £ small enough it follows from (2.23) and (2.26) that

dist(y;,})=1p> and dist(f; "y, 3) = 3ps
and so
.27) dist(y;, 72)>14po and  dist(fi "'yi-1, Ta) > ipo.
Therefore one can employ Lemma 2.2 to obtain that
.28) sty £y Gl i
!
for appropriate preimages of y; where [ =20 and C; > 0 depends only on p, in (2.22).
It follows from here that

~G,~i+1)

—Giy —i;)+ ~ P r—j
(2.29) dist(fs" "'y, foy) = Cose® Y. € 'ya
r=j

for corresponding preimages of y. where [ =1,..., . — .
It is easy to see that

(230) i,'+| - ij = C;l lOg p;]

where C,>0 is independent of p,, i; and the choice of points {x} and {y,}.
Therefore if p, was taken initially small enough then Crys"7 <1 and the sum in
the right hand side of (2.29) is bounded. This together with (2.23) and (2.29) yield
(2.21) for some y € f *y, and proves Lemma 2.3

Next we shall need the following

Lemma 2.4. Let JC I be an interval such that f; maps J homeomorphically
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onto its image Q = f3J and
(2.31) inf dist(y, 7,)= 86 >0,
yEQ
then
sup [ (f2)(x)]
xEJ -

2.32) <
inf | (£2Y(0)]

K,
where Ks > 0 is independent of n and the interval J.

Proof. Let J=(a,b),i.c. a and b are the endpoints of J and denote a, = fia
and b, = fib. Then by Lemma 2.2

(2.33) dist(a,, b)) = ¢;'yo" " dist(a., b, ).

Let p, be defined by (2.22) and take p,<ip, small enough. Without loss of
generality we can assume that § <ip, and

(2.34) mes Q = p, = 8c¢;

where mes denotes Lebesgue measure.
Let i, <-:-<i, be such that either a;, € U, () or b, € U,G), j=1,...,k but
aZ U, 3) and biZ U, ) if I#j for some j=1,...,k Let
(235) vs =min{v > i + 1: dist(f} 'a,, fr ")) Z 8/4 and dist(f} 'b,, f1 "6)) = 8/4},
then
(2.36) cither dist(a, fAQ)=8 or dist(h, fAG)=5
for =i, +1,...,vy. By (2.33) and (2.34), mes(a;, b;)= & and so
(2.37) aZU,pG) and BEU,,G) for l=i+1,...,vY.
Let o, be the Lipschitz constant of log|fi| on I\ U,:G). Denote by L; the

minimal interval containing points a;.., b,«; and f, G). Then

W)

vse —ij—1,,
flelf.l(f‘ Y(2)|

Gy _ .
. vs ——1,,
inf [ 7))

log

(238) = zf::gLi 0§’§§_ﬁ_1 (log lf/,\(f'(ZI))l - lOg I f:\(f’(zz))l)

Sao > mes(fil)).

o141
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Since by (2.33) and (2.34)
(2.39) mes(a,y, b.p)= 8
then by (2.36),

(2.40) mes(fe* *7'L)=26
and
(2.41) distG, fiL;)>%p,  forall [=0,...,v5 ~i—1.

Therefore by Lemma 2.1,
(2.42) mes(fAL)= Goys * 7" torl1=0,..., 00 ~i~1
where C;>0 and y;>1 depend only on p,.
Hence the right hand side of (2.38) is bounded by 0vC,8(1— v5')"'. Thus by

(2.35), (2.36) and (2.20),
(243) meS(a ii+1s bi,-+]) = C108_1 diSt(f(%), (aii+‘, bi,-+1))mes(a,,§f’, bvgi))

for some C,,>0 depending only on p.
Solving the equation 4Ax (1 — x) = z with respect to x for z close to A and taking
into account that ;& (a;, b,) because of (2.31) one obtains from (2.43),

(2.44) mes(ai,., b.—,-) =C,877 mes(a,$, vai))dist(%, (a"i’ bii ))

for some C,;>0.
Again, since ;& (a,, b,) it follows from here that

sup |fi(z)]
2.45) z&(aybi) = (14 C,d ' mes(a.p, b,y))

inf |fi(z)]

z&(ai,by)

for some C;,>0.
Let o, be the Lipschitz constant of log|f}| on I\ U,(3), then in the same way as in
(2.38) one can see that

sup (Y @)

ze(ai’_+1.bii+|

inf  |(f"

Zé(ail+l-bi/.+l)

(2.46)

log o 2 mes(a;, b;).
T EIELRa!

—§-t

=
Y(z)]
Finally, from (2.33), (2.45) and (2.46) we get (2.32) with
(2.47) K; = exp{(cs + C,6 )1 — v5') " mes O}
that completes the proof of Lemma 2.4,

The next result will be important in the proof of the Theorem.



RANDOM PERTURBATIONS OF TRANSFORMATIONS 205

Lemma 2.5. Let x € I be a point, p >0 and Q C I be an interval such that
[2"Q is defined and (2.31) holds. In each connected component J, i =1,... 1 of the
intersection {,"Q N U, (x) take an arbitrary point y;, i = 1,..., L Then there exists Z;
independent of n, Q, p and the points {y:} but depending on 8 in (2.31) such that

1=i=!

2.48) AP R EPRIRTA T
If nz|logpl? and p is small enough then
(2.49) 2Z,zp™ 152.::1 [(FRY ()l

Proof. By (2.31) one can find an interval R D Q with
(2.50) inf dist(z, J.)=28/2 and mesR = §/2.

It follows from Lemma 2.4 that if I', is a connected component of f;"R, I'> is a
connected component of f,"Q and I'y D I'; then

mesl, _ mes Q
mesl; = " mes R

2.51) =256"'K; mes Q.

Let
d=p™" max |(fY(y)|™",

1=is!

then each connected component I of f;"R satisfies mesI' = pd and so by (2.50) and
(2.51),

mes(Q"O N Up(l+d)(xn <
(2.52) mes(fs R A Usran(5)) = K; mes Q.

Again using Lemma 2.4 one can see that

(2.53) mes(f;"Q N U,ay(x))Z K5 ' mes Q 3 |(FA)(y:)|™'

1=i=l

where {y:} are the same as in (2.48).
Since mes(fi"R N U, 20 (x)) = 2p(1 + 2d) then, by (2.52) and (2.53),

2CuK1+2d)Zp™" 3 1(FY ([

proving (2.48) with Z, =857'K5.

If n Z|lnp[” and p is small enough then, by Lemma 2.2, it follows that d =1
proving (2.49) and Lemma 2.5.

Employing Lemma 2.1 instead of Lemma 2.2 one can prove the following results
similar to Lemmas 2.4 and 2.5,



206 A. KATOK AND Y. KIFER

Lemma 2.6. LetJ CI be an interval such that f maps J homeomorphically
onto its image Q = fiJ and

(2.54) o;?’si,?_l distG, fiJ) = p,
then

sup [ (£2)(x)]
inf [(73) (%))

(2.55)

HA

P

where K, >0 is independent of n and J.
Proof. From Lemma 2.1 it follows that
(2.56) mes f'J = C, (y}/™) " ™"

where C, >0 depends only on p.
If o, is the Lipschitz constant of log|fi| on I\ U, (3) then, in the same way as in
(2.38), one can see that

sup | (f3)(x)] g
A =0, mesf']

inf|(FY(x)] -

(2.57)

This together with (2.56) give (2.55) proving Lemma 2.6.

Lemma 2.7. Let§,p>0, n=|lnp[”, x EN\U,(¢) and Q CI\U; () be an
interval. In each connected component J, j=1,...,1 of the intersection
£r"Q N U, (x) satisfying the condition

(2.58) ,Jnin_ distG, fiJ;)= 6

take arbitrary points y, €J,, j=1,...,1 Then

2:59) Zzp™ 152 ll(f:)’()’i)l_l
j=

where Z, depends only on 8, but independent of n, Q, the points {y;} and p >0
provided p is small enough.

The proof is the same as in Lemma 2.5 by using Lemma 2.1 and Lemma 2.6 in
place of Lemma 2.2 and Lemma 2.4, respectively.

3. Linearized Markov chains

The following result will be proved in the Appendix.
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Propesition 3.1. For arbitrary points x,,...,x, €1 let 8,,..., 8, be indepen-
dent random variables with distribution functions P{0, = n}= " _r, (£)d¢. Then there
exist C,5, a;> 0 independent of x,, . .., x. and n such that for any non-zero numbers
i, ..., Q, the distribution function of the random variable

(1§2§ a?)“” l;é a: (6, — E6,)

has the derivative, i.e. the probability density function, satisfying

ay....q —a|n|

Ter.on(M)= Cse

where EO, = [ :c &r. (£)d¢E is the expectation of 6;.
For x€(0,1), £€ER'=(—»,») and a Borel set ¥ C R' define

3.1) Rxgwy=a*frm( —fax)E) 4y,

where the functions r, (¢£) were introduced at the beginning of §1.
Consider the Markov chain {;(n) with the initial condition {;(0)= ¢ and the
transition probability R:(n, V), i.e.

(3.2) P{{i(n+1)eV¥{{(n) = Rix ({i(n), V)

where P{- | -} denotes the corresponding conditional probability.

Lemma 3.1. Let {6,(k)ER', k=1,...} be mutually independent random
variables with the distributions

(3.3) m@wnwn=Jm4me

Then one can write

64 Gim) = e 3 (Y008 (k) + (7Y ()¢
in the sense that the left and right hand sides of (3.4) have the same multidimensional
distributions and so probabilities of all events for both sides of (3.4) are the same.
Proof. Denote by {i(n) the right hand side of (4.4), then
{in =D} =Pled(n)+ fi(fi 'x):(n~1)e¥
= Rp. ({in — 1), ),

P{{(n)eV¥
(3.5)

Ln -1y}

since 03(n) and {i(n — 1) are independent. But ¢$(n) and £%(n) are both Markov
chains ¢3(0)= £:(0) and by (3.2) and (3.5) they have the same transition prob-
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abilities. Therefore ¢: and /¢ have the same multidimensional distributions and the

proof is completed.

For ¢ € R' and Borel set ¥ C R' denote by Ri(n, ¢, V) the probability of the
event {{;(n) € ¥} provided {:(0) = £ By the Chapman-Kolmogorov formula

(3.6) Ri(n ¢ W)= f f r(& )i, 1) i (e, ma)dm - d,
R R'

where
¢!
6.7) ritm, £) = 7, (F2L00)
Lemma 3.2. There exists C,,>0 such that for any x €(0,1), ¢ ER' and a
Borel set ¥ C{n:|n|=1} one has
(3.8) Ri(n, £ V)= Ciue "B, *(x)mes ¥|(f2)y (x)["

provided fix#3 for all k =0,...,n— 1, where B,(x) is defined in (3.13) below.
If, in addition, n = (In¢)* and

(3.9 dist(fix, 7,)= 6
then

G 1O)Ri(n, £Y)= Ciue ™ B (x)mes W( (1) ()] exp{— a:B."*(x)| e '€ + B (n)]}

provided £ > 0 is small enough with respect to 8, where B is defined by (3.11) below.
Proof. Define the random variables
e (m)= 3 (0.0~ b)),
where b(y)= J__ &, (£)d¢ and
(.11) B.(m)= 3 () 'b(fix).

Then by (3.4),
Rin, £¥) = P2 (x)(eq (n) + £B. (n) + £) € ¥}
3.12) = P{B"(x)(p.(n) + B. (n) + £ ' §) € £ Bi () ((F2) (1)) ¥}

where

(.13) B.(¥)= 3, ()™,
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-1/2

By Proposition 3.1 the distribution of the random variable B, “(x)¢.(n) has a
density with an exponentially decreasing estimate and so by (3.12) one obtains

(3.14)  Rin &W)= Cue B, ()|(FY (x)[ mes ¥exp{ — as| nn(x)|}

where

(3.15) nu(x) = B."(x) 7'+ Bc(n)— |

n€e ((f )( x) '

and (3.8) follows.
Next assume that (3.9) is true and n = (In £ ). Then for ¢ small enough one can
see from Lemma 2.2 that

(3.16) S Inl=1.
Since
(3.17) B.(x)Z(fi(x))"z@Ar)”

one obtains (3.10) from (3.14)-(3.17) proving Lemma 3.2.

Now we shall prove a similar result under the conditions of Lemma 2.1 instead of
Lemma 2.2.

Lemma 3.3. There exist Cs, a,> 0 such that for any x € (0,1), t ER' and a
Borel set ¥ C{n:|n|=1} one has

(3.18) Rin, £ V)= Cre 'mes V(FAY (x)| ' exp{— a.e 7'| £]}

provided n = (Ine Y, € >0 is small enough and

(3.19) min dist(fx, ) = 3p0

O=k=
where po=13distG, 7,). If ¥ C{n:|n|= e} then (3.18) is true for any n = 1.

Proof. By Lemma 2.1

(3.20) |(fx)'(x)| "= Ciel(y:

with some C),>0. Thus (3.16) and (3.27) follow and the proof is the same as in
Lemma 3.2 since in our circumstances Ci; = B, (x)= C,, for Ci;> 0 independent
of n and x.

Since we have identified the points 0 and 1, then the right and left hand side
derivatives of f, at 0 need not coincide. For this reason we shall construct another
Markov chain which will describe the behaviour of the initial process x, when it
stays near zero.

For ¢ € R' and a Borel set ¥ C R' define

UM,

) forall k=0,...,n—1
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(3.21) Ri(EV) ="' f o (11—_4AL§J> dn

&
A 4

where
(3.22) 4r=fi(x)>2, ie A>}

since for A =1 the transformation f, maps [0,3)— [0, A ] homeomorphically and so it
has a stable periodic orbit that contradicts our conditions.

It is easy to see in the same way as in Lemma 3.1 that Ro(&, V) is the transition
probability function of the Markov chain {, constructed inductively in the following

way: {o=§
(3.23) LE=4M| L5 |+ €6,

where {6, € R', k =1, ...} are independent random variables with the distribution

(3.24) P{6, €V} = f ro(n)dn.

v

Let Ri(n, £, V) be the probability of the event {{, € ¥} provided {;= & By the
Chapman-Kolmogorov formula

(-2 Ri(n & ¥)= f f FiE M), M) 1i(as, T ) - dim,
Rl R]

where
(3.26) ri(m &) =e"ry (5—_%‘—"-1) .

Lemma 3.4. For any n, € >0 and a Borel set V¥,
3.27) Rin e V= Coe '2A)Y " "mes ¥
where C,> 0 is the same as in (1.1).

Proof. Put ¢, = ¢ '(4A)"{;, then
(3.28) @ =|@ut| + (A1) "0, and @y=¢'&

Notice that if n is a random variable with some distribution having a density p, (x)
satisfying p, (x)=C for all x € R' and some constant € >0 then the random
variable |n| has the distribution with a density py,(x) satisfying pi,(x)=2C
Indeed,

P{[n|eT}=P{n e+ P{ne -TI}
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and since mes ' = mes(—T') then

(3.29) pm(x)= py(x)+pa(—x)=2C.

Consider ¢, = ¢7'|£[+(41)'6,. By (1.1) and (3.24) the distribution of ¢, has the
density

(3.30) Pex) =4Aro(dX (x — 7| £])) =40

Since ¢, and 6, are independent, then by the argument above and (4.41), if the
density p,, . (x)= C*™" for all x, then

(3.31) Do (x) = I P{(41) "6, € dy}pio_i(x —y)=2C*"

RI

for all k =2,...,n. From (3.30) and (3.31) it follows that
(3.32) Per ()= A2 C,,.
Therefore

Ri(n, & W)= P{{i€ ¥} = Plo € e '(40) "V}
(3.33)
= f Doz (x)dx = Coe '2A) " Vmes ¥

e laay "
proving (3.27).
We shall need also

Lemma 3.5. Foranyn, m, ¢ >0 and a Borel set ¥,

o

R(n, m, W)= j Ro(n, £ dn)R. (m, m,7)

—o0

(3:34) < Coe (Y () @A) " mes V.

Proof. It is easy to see that Ri(n, m, ¥) is the probability P{x: . € ¥} for the
process

(3.35) Kin= € 3 (Y00 (k) + RV

where {6, (k)} are the same as in Lemma 3.1 and these random variables are chosen
to be independent of ¢} defined by (3.23).
Let

me(m)= 3% ()76 (k)
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Since 7n.(m) and ¢, in (3.41) are independent then, by (3.45),
Ri(n, m,¥)= P{x;.E ¥}
(3.36) = P{(4A)"n.(m)+ @, € £ ((fT)(x))"(4A) " ¥}
= Goe (Y ()T @A) " P mes ¥

proving Lemma 3.5.

4. Proof of the Theorem
If 'C I is a Borel set define

Ji(p,n,x,T) =P, {osnk'nsig_1 dist(x%,3)>p and x. € F}

4.1)
= ] j jqzx(yl)qzy.(yz)- " Qoasr (Ya )y -+ dyn

nG, 6 nGd r
where we have used the Chapman-Kolmogorov formula, g3(z) is defined in §1 and
P.{-} denotes the probability of the event in brackets provided x;= x.

The main step in the proof of the Theorem is the following.

Lemma 4.1. There exists yo>0 such that for any x € [¢*"™, 1~ £*""] and
an interval Q C I satisfying (2.31) with some & >0 one has

4.2) Ji(e",n,x, Q)= Ds mes Q

provided (Ing)'Zn=(Ine), y = v, and ¢ is small enough, where D; >0 depends
only on 8 and a,.

Proof. For any Borel set I'C I and any numbers p, n > 0 define

Ji(p, m, m, x,T)
4.
“3) =P, {xi. € U, (fix}), dist(xs,3)>p for all k =0,...,n—1 and x.E€T}.

Then by the Chapman-Kolmogorov formula

£ —_
-’2(p7 n, n’x’r)_
Un(h)NNUp3) Un(ayDN(NUpB)  Un(fayn-20NUpB)  Un(faya-)OT

44 . . .
( ) X ‘I/Ax()’l)‘hm()’z) e qfu'-—x(yn)dyl Tt dy"

By (1.1), (1.8), (1.9) and (1.11) it is clear that

| Ji(p, n, x,T) = J:(p, m, n, x,T)|

4.5) , - .
=1+ &) (Co+1)Y’'ne “mesT exp (—- . min(a,, az)) .
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Let
(4.6) £ =mesQ

where Q is an interval. Then one can find points v,,..., v, such that

@.7) QC U Ufn) and mesQZ1 S mesU.(v)=¢k..

1sisk.e 2 1=i=k,

If ¢ > mes Q then instead of U. (v;) we shall take Q itself. Clearly

4.8) Jip, m, n, x’Q)§,<2<,, Jip, m, 1, x, U, (v)).
Take
4.9) n=¢"" and p=2C.”

where C,>0 is the same as in (2.20) and B8 >0 will be chosen small enough.

According to (4.4) the integration in J52Cse®, ¢'® n, x, U, (v))) is over ¢'™*-

pseudo-orbits @ = (x, y,, ..., y.) starting at x, ending in U, (v;) and not approaching
3 (except, maybe, for y, ) closer than 2C,¢”. Then by Lemma 2.3 one can find z° € I
such that

(4.10) dist(y,, frz*) = Cee '™, yo=x, k=0,...,n—1
and therefore
4.11) dist(fxz*,3) = 2Ce® — Coe '™ = Coe® forall k =0,...,n

provided B <3.
Consider all connected components Z; of the intersection Uc,'-=#(x)N
fr"U. (v;) containing a point z; € Z; such that

4.12) dist(fz;,3)> €** forall k =0,...,n—1.

It follows from (1.15) that if z* € Uc,.'-#(x), f32* € U..c."-**(v;) and (4.11) holds
then there exists z; constructed above satisfying (4.12) and

4.13) dist(fiz;, fz*)=<ie'™  forall k=0,...,n

provided ¢ >0 is small enough. Hence by (4.10) and the argument preceding it one
concludes that for any £“-pseudo-orbit @ = (x, yi,..., y.) starting at x, ending in
U. (v;), with yo=x,yi,..., y._r staying outside of U.c,.#(z) there exists 2; intro-
duced above such that

4.14) dist(fizi, )= &'* for all k =0,...,n.
Therefore

(4.15) J32Cee® e P, n,x, U, (0))= D Ji(e'™, n,x; 2z, U. (1))
i
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where

T, nx; 2z, =PAxi€ Us(fiz) forall k =0,...,n—1and x, €T N U;(fiz)}
(4.16)

= f e f f q;u(YI)q;Ayl(yl) Tt q;m.-x()’n )dyl o dyn

Us(fz) Us(fi™'2) UsfionT
Let B >0 be so small that
(4.17) 1-48>a, and B<%
and suppose
4.18) x E[e™F 1—e*"")

If y € U.-#(frz;) and yi.i € U, (fyzy,) for k =0,1,...,n —1 then one can
see from (4.12), (4.14), (4.17) and (4.18) that dist(y.,0)>¢** for all k =0,...,n.
Therefore

4.19) ik = Yen| < g™

provided & is small enough and f, has bounded second derivatives on any interval
(ys, f52z;). Then by (4.14),

(4-20) l)’k+1 - fAYk - ()’k+1 - ’;HZ.‘,‘) + f;(f’):zij)(yk _fl):z.',')l = Clz;ffz_(’ﬁx

for some Cy>0.
Since (4.19) is true one can employ (1.8) to obtain

@21) Tim () (14 2296 7'r, (Lot Le).

Set 1, =y, — fiz;. Then by (4.20) and Assumption A(iii) it follows that

1k
ket " YR} L e+t — JallaZii )M
Thon P Tz €

provided ¢ is small enough and

1-7,
=g

4.22)

(4.23) either & (M ”fi(ffzij)ﬁ)e V;:Hz"_ or £ (V= fivi) & Viy,.
If (4.23) is not satisfied then, by (4.20) and Assumption A(iv),
4.24) Yirt € dkni ={y: § —fiyx € aVzYk(el-7ﬂ)}

provided ¢ is small enough and so one can drop the restriction (4.23) by modifying
(4.22) in the following way: '

P (87 s = iy ) = mtory, (87 (e — fr(fazg)me) +8177°

4.25 _
( ) + Xot ot (Yes )i (€ 1(}’Hl = fiye)
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where, as usual, yr(y)=1if y €T and yr(y)=0 otherwise.
From Assumption A(iv) it follows that

(4.26) e 7', (7 (e — iy ))dYins =2Coe ' 77*

ErNUAB (X 2y)

provided y. € U.—#(fi"'z) and ¢ is small enough.
Now from (3.6)-(3.8), (3.10), (4.16), (4.25), (4.26) substituting £ = x — z; and
Me+1 = Yerr — fr ' z; one obtains

J;(S 1—357 n,x 5 zii, Us (vl))
(4—27)< -1pp-1/2 s —1; 1-148 _ -12 -1
= Cuwe B (zy)| (Y (2) (e +exp{—aB;"(z;)e7! | £+ B., (n)]})
(cf. the formula (5.35) of [S]) for some Cys >0.

Next we shall prove that for any z,;, 2,;,€ U'c,.'#(x) satisfying (4.12) one has

(4.28) Czolff;—g?ll‘gf Cy and |le,,(n) Bz:m(")l—czob‘

with Cy > 0 independent of iy, j,, i, ja.

Moreover we shall show that there exists an integer N depending on & such that

(4.29) ;! _Jli(fi))i(h)l}_(ncz.e‘ ) forallk=1,...,N
Py !2}2

and
(4.30) l(fi)'(zi,‘)l—l = C2181-6ﬂ for all l =N+ 1, .

where G, >0 is independent of i, iy, ji, jz, i, j.
Indeed, let

4.31) N = max{k: dist(f’z.,;, f<z,) = &' }.

Then from (4.12) and Lemma 2.2 one can see that (4.29) holds with some C;; > 0.
Since dist(z,j,, 2,,) = 2Cee '72° and dist(f2 "' zij, f  Zip) = €', then by (4.29)

(4.32) XY ()| = Cae™

with C», > 0 independent of &, i, and j,. Using again (4.12) and Lemma 2.2 one can
see from here that

(4.33) XY ()| = Cae'™
for some C;>0and all k =1,....

This proves (4.29)~(4.30) and so (4.28) is also true since 8 <1, sup, | fA(y)| <4A,
n=(ne)* and b(y) in the definition (3.11) of B,(n) is bounded and Lipshitz
continuous by the conditions (i}-(iv) of §1.
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Hence setting B, = B, (z.,;)and B(n)= B.,, (n) we can rewrite (4.27) as follows:

)

T n,x; 2, U (00))

(4.34) .

E=24 p(n)

= Cue "B () (s'-“ﬂ +exp { - a,B;'""

for some Cu, a;>0.

Let
F, = {z,,-: k= B;" 5—;—11+ B(n)|<k+ 1} .
Then, by Lemma 2.5,
(4.35) B,"e™! ng [FY(z)] " =2Z,.

Since |(f.Y(z)| = @A)" for any I and z then, by (4.13), one has B;"?=A7"".
Besides, from (2.12) and Lemma 2.2 it follows easily that | B(n)| = const ¢ .

But we consider z; satisfying |x — z;| = Cse'™*, and so the sets %, should be
taken into account only when 0= k = ¢ provided ¢ is small enough. Here we
have used | x — z; | instead of dist(x, z;) because this is the same in view of (4.17),
(4.18) and |x — z;| = Co&'™, provided ¢ is small enough.

Now from (4.15), (4.17), (4.34) and (4.35) one obtains

(436)  J:2C.E% e P nx, U.(0)=2CuZse D, (7' +e )= CosZse

Osk=e

provided ¢ is small enough, where C,;>0 is independent of &, §, i.
Finally, by (4.7), (4.8) and (4.17)

4.37) J52Cef, ' %, n,x, Q)= CsZs mes Q.

Since n =(In ¢)* and (4.17) holds, then (4.2) follows from (4.5) and (4.37) with
vo=pB and D; = Css2Z, proving Lemma 4.1.

Since the derivative of f, is not continuous at 0 we have to treat this point
separately.

Lemma 4.2. There exists Co, >0 such thatif Ing)'Zn=(lne) ande >0 is
small enough, then for any 8 <3 and x € U;(0) one has
(4.38) Ji(8,n,x)=P {(,'235" dist(x§,0)= 8} = Co2A) 0P

Proof. By the Chapman-Kolmogorov formula

Ji(8,n,x)= f f Q5 (Y)G5n (¥2)** Glayas(¥a)dy, - - - dy,
Us(0) Us ()

4.39
(4.39) =Ji{8,nx)+ R (6,n,x)
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where

Js(8,n,x)=
Us(ONU:'~B(fax) Us@NU:'"B(fay1) Us(0)N U "B (fayn-1)

4.40 . . .

(4.40) X q5(Y)q 7 (¥2) " Ghyas(Yn)dyi - - - dYn,

B > 0 satisfies (4.17) and R* (8, n, x) is defined by (4.39) and (4.40).
By (1.1), (1.8), (1.9) and (1.11), in the same way as in (4.5), one has

(4.41) R*(8,n,x)= Cynexp(— ase™*)

for some C,;, as>0 independent of £ and n.

The integration in (4.40) is over £'™*-pseudo-orbits w = (x, y, ..., y.) starting at
x and staying in the 8-neighbourhood of the point 0. Since 8 =+ then dist(y;,z) Z 3
and by Lemma 2.3 one concludes that there exists a point z* such that

(4.42) dist(fiz“, y:) = Cue ', i=0,1,....,n, yo=x
where Cy >0 is independent of x, yi,...,y. and &. Then
(4.43) fiz? € Usicue'#(0) forall i=0,1,...,n

If £ is small enough then 8 + Cxe'™® <3, and since |fi(x)|=%>1 for any

x € U,5(0) when A Z3, one obtains from (4.43) that

(4.44) fiz° € U.(0) foralli=n—i(ne) provided ¢ is small enough.
Hence by (4.39), (4.40), (4.42) and (4.44),

(4.45) Ji8,n,x)=Ji(e' ™, n~[ilne )] —1,x)

and either x € U, '-2(0) or J5(8, n, x) = 0, where ¢ is supposed to be small enough
and [ -] denotes the integral part.
Now (1.8), (1.9), (4.17) and (4.39) yield, for x € U."-2s(0) and any k,

Ji(e" % k,x)= (1+ &™) f - I e7'r, (EQC_,X_-)) €' r e (0’!!;2., 22!)

€ €
U, !1-28(0) U, 1728(0)
(4.46)
8 s (W) dy, - - - dy,

where

z—y iflz—y|=Sex,
4.47) o(y,z)= {z—y+1 iflz—y+1|=e™,

z—y—-1 if|z—y—-1|=e™
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It is easy to see that
(4.48) | o (fyi, yis) = (0, i) + 4X |0 (0, yi)| | = Croe™™*

since y, € U,-2(0) for all i =0,1,...,n.
Then in the same way as in (4.25) one has

T fyi (M) = ’o(f—l(ﬂm —4A I Ni I)) + SI_SB

&

(4.49) oy, sz))

+ Xﬂﬂ(yl’ﬂ)’ﬂ» ( £
where o, = o (0, y;) and
(4.50) i ={y: o(fiy:, §) E aV5,("*)}.

Next, similarly to (4.27), from Assumption A(iv), (3.25)-(3.27) and (4.46)-(4.50) it
follows that

(4.51) Ti(e' 7 k, x) = Cool1 + £%) e '(2A)

for some C; >0 independent of ¢, k and x.
Finally (4.39)-(4.41) together with (4.45) and (4.51) yield (4.38) for ¢ small
enough, proving Lemma 4.2.

From Lemma 4.2 it follows that we can drop the restriction x € e "™, 1 — 2" "]
in Lemma 4.1.

Corollary 4.1. For any x €I and an interval Q C I satisfying (2.31) with
some & >0 one has

(4.52) Ji(e", n,x, Q)=2D; mes Q

provided (Ine)'=Zn=2(ne)+1, y =17, and ¢ is small enough, where D; is the
same as in (4.2).

Proof. Since for some C; >0 independent of ¢, y and z

(4.53) q5(z)=Cye™'  forally,zand e >0,

then

(4.54) Ji(e", k,x, Q)= Cye 'mes Q for any k.
Define

(4.55) 7. =min{k: x; & U.=(0)}.

For x& U.=(0) the inequality (4.52) is proved in Lemma 4.1. So assume that
x € U .=(0). Since 7. is the Markov time, then by the strong Markov property of the
process x; it follows from (4.2), (4.38) and (4.54) that
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Tienx @)= 3, EP{ max, distxi, 005 e, 7. = k] Jie’n — k. x1, Q)

= Z P Ar. = k}i(e",n — k, xi, 0)
=(lne)

1=k

(4.56)
+ Cye 'mes Q 2 P, {02133{-1 dist(x;,0)= s“z}

1+0ne)f’sk=(ne)’

= D, mes Q + CyCse (In £ (2 ) mes Q,

since (Ing)*=Zn=2(ney+1, and so when k=(Ine) then n—k Z(lne) +1,
where E denotes the expectation. Recall that A >3, and so (4.52) follows from
(4.56) provided ¢ is small enough, proving Corollary 4.1.

Next we shall take care of paths of the Markov chain xi which sometimes
approach the point 3.
Define

P:ﬁ,iz,.“,ik('Y, na xv O)
(4.57) =P{x{€U. Q) for j=iyis...,0k<n x;& Us@)if j#i
for some ! and x; € Q}.

Lemma 4.3. There exists y;, Cs >0 such that for any x € I and an interval
Q C I one has

(4.58) P o (v,nx,0)= Cue®“ " ?mes Q

«.59) Ploa(n %, Q)= [ ghalnx )dy,
2 ,
then by the Chapman-Kolmogorov formula

(4.60) 8;,“...‘:(1.”1, X, Y) = f g:l,...,il-l(il) X, Z)gf.(iln - il, z, )’)dz

U.7(1/2)

for any I =1,..., k where we put ir,, =n.
Denote also

gimy= [ G008 0 Qi s Om e (2 dya

nU.v(1/2) nu.r(1/2)

4.61)
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then by (1.1), (1.8), (1.9) and (1.11),

4.62) gii, x,2)=2Ce ' = A
provided & >0 is small enough.

Suppose that
(4.63) gh (i X, z2)SAi.,  forany z € U~ ().

Then by (4.60),

& ilits, X, Y) = Al f gili— i, 2, y)dz

U,.7(1/2)

(464) =A ?—1 J' f q;u(v)gf)(im —i— 1, v, )’)dZ dv
Uer(12) 1
= Al ng J’ j qZ,(v)gS(im — i — 1, v,y)dz dv
j=m

u*vappuany 1

where UP@)=U.»G) for j=1,...,m, UG)=D, Bn1=7,

(4.65) 1>2B8u>B;>Binzy forallj=1,...,m and 28,>1-8,.
If z € UYG) then fiz € Ua.#(f, () and so by (1.1), (1.8), (1.9) and (1.11)

(4.66) q;..(v)= Cunexp(— ase®®™") if z€UP(3) and o& Us,.»(f, ¢))

for some Cy, as>0. Since 28; <1 one obtains from here that

j q5:(v)go(ire1 — i — 1, v, y)dz dv
v Vary 1

(4.67)
= j q7.:(v)golis1— iy —1,v,y)dz dv + exp(— a,e*"7")

uPapu¥ 012y Usi.28(h (112

for some a;> 0 provided & is small enough.
It is easy to see that

(4.68) f i(v)dz S2Coe"

vap)

where C; is the same as in (1.1) and

@9 [ gz = ai®) S Ifi) dw S Cue™,

v anuar) awPanuParzy) 2&faw
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for some C;, > 0 since
4.70) f qi(v)dw =1+2¢>,
I

Indeed, by Assumption A(i)-(ii), (1.8) and (1.11), if @ =3 min(a,, @,) then

fqi(v)dw§ I q.(v)dw +exp(— ae*?)

U, !'=B(v)

4.71) =(1+e%)e™ J"" (ws— v) dw +exp(— asg™*?)

1

= (1+2¢7)

provided 0 < B8 <3 and ¢ is small enough.
Now collecting (4.64), (4.67)-(4.69) one obtains

. e —1 £4 .
g aline, X, ) S2A5,Coe® f go(isi— i — 1,0, y)dv
Usae281(5(112))

4.72)
+AL,Ca 2 e I goliei— i — 1,0, y)dv.

2=j=m

Usar*8(fa (1/2))

Next, in the same way as in (4.5) it follows from (1.1), (1.8), (1.9) and (1.11) that
4.73) gl — i —1,0,9)S g — i~ 1,0, y) +e ™™’
for some ay> 0 provided ¢ is small enough, where i, — iy =n =(Ing)’,
go(m,v,y)
474) =
U 'Y (oMUY (1/2) Ur =Y (ym-3)ONUSY (1/2)) Us =Y (aym-NUe Y (R yINUY (1/2))
X q7:(2090:(22) " " * Gizn-2(Zm-)qhen-1(Y)d21 " AZons.

The integration in (4.74) is over ¢ ' ?-pseudo-orbits @ = (v, z,,. .., Zm-1, y ) starting
at v, ending at y and not approaching ; (except for the last point y) closer than &”.
Then by Lemma 2.3 one can find z* € I such that

4.75) dist(z, fiz)s '™, i=0,....m; zZ=0, Zn=Yy

provided € is small enough.
Take one point z¥ in each connected component Z” of the intersection

f;("nl"’"l") UFI—Sv(y) N U(\Aswi(fk (EI))
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where y € U.- (3), then it follows from above that

golimi— i~ 1,0, y)dv éz j he(z";hm— i —1,0,y)dv
Usae28,(fr (1/2)) ' Ue1=47(z")
(4.76)

1-4 ij, - .
=2¢ *2 sup  h*(z";ia—i—1,0y)
T veUl-4vz")

provided ¢ is small enough where

hE(Z, m, v, W)E [ j qfw()’l)qu()’:)" 'q;um—l(w)dyl'“ dy'"_"
U3 (fa2) Ue'37(f32)

@.77)

First, suppose that A <1, and so if € is small enough then
(4.78) Uere?#ise-r(fi (%)) C [Ea, 1—-¢° ]

Using (4.21), (4.25) and (4.26) in the same way as in (4.27) and taking into account
that (3.8) divided by mes ¥ is the inequality for densities, one concludes from (4.77)
that
4.79) sup R (275 ina—i—1,0,y)= Cye | (F Y ()
veU 47z

for some Cs>0. o :

Since 27 € Ug.#(fi 3)) and T 20 € U, va-(b), then using Lemma 2.2 one
can see that

(4.80) [ Y () = Cae™

for some C;;> 0 independent of ¢, i and j.
Hence by Lemma 2.5 it follows that

(4.81) ST TS Cue™

Now by (4.72)-(4.74), (4.76), (4.79) and (4.81) it follows that

(4.82) 8i i, X, y) E2C3C G A HRY-Rt (3€3Bl_l + 2 823'._’8"-'> =AlLe”
2£7Em

provided ¢ is small enough and vy is chosen to satisfy
(4.83) 0<5y <min(38,—1,28; — Bj-1)

which is possible since by (4.65) the right hand side of (4.83) is positive. Thus by
(4.62), (4.63) and (4.82),
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4.84) 8iienlin, X, 2)=2Ce'e*™  forany z € U.- ()

and so

g:':; 44444 ik(n, x, )’) é J’ gizlm..ik—l(ik, xa Z)gi(" - ilu Z, )’)dl
U,Y(1/2)

(4‘85) _.S_ (2C0)28-—28(k—l)'y ;

this together with (4.59) proves (4.58) under the condition A <1.
If A =1 then f,(3)=1 and we have to take care about the endpoints. Let

™ =min{l: fiz7 & U.»(f. G))} if j>1
and
' =min{l: fiz"' & U..(f, ®))}.

Considering the integral h®(z" ii—i;—1,v,y) defined by (4.77) we shall
estimate g}, (yi+1) for [=0,...,7" =1 by means of (1.9) and (4.49), and for
=7 .., 4= i —2 by means of (1.8) and (4.25). Now employing Lemma 3.5 one
can see that

i i1

@.86) k" (275 ia—i—1,0,y)= Cwe @A) |(f) Y(fr 2!
for some Cs>0. _ o

Since fi'z7 € Ugu# if j>1, fi 2" € U and i " 27 € U,7.o (), then
for some Cyp>0

iy =i =T

4.87) [(fx ij_')’(f;";ii)f' = Cue™ if j>1,

and if j =1 then the right hand side of (4.87) should be replaced by Cys**. By
Lemma 2.5 one can see from above that for some C,; >0

(4.88) ST Y ) = Cae® i > 1,

it =k
and if j =1 then we replace Cye”® by Cy e
Finally, by (4.72)-(4.74), (4.76), (4.86) and (4.88) it follows that
(4-89) giillier, X, y)= Coe ™AL, (35 Fimir2be 2 Ezﬂ’_ﬂ"') =Al¢e”
2ZjEm

provided ¢ is small enough and vy is chosen to satisfy
(4.90) 0<5y <min(B,+28:.— 1,28, — Bi-1)

which is possible since, by (4.65), the right hand side of-(4.90) is positive.
Now the conclusion of the proof of Lemma 4.3 is obtained by (4.84) and (4.85) in
the same way as above for the case A <1.
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Next we shall go back to the proof of the Theorem itself. Take an arbitrary
interval Q C I satisfying (2.31) with some & >0. Then by (4.52) and (4.58),

Pixi€ Q}=Ji(e"nx Q)+ 3 3 Pi.ulynnxQ)
(4.91)

=2D;mesQ+ Y > P .(vnxQ)+e D (:) £* "™ mes Q

k=1 1< <ig k =mo+1
where m, = integral part of (3/y +2), (;)=n!(n—k)!/k! and we take
(4.92) n = n(e) = integral part of (Ing)’.

If k = mo and n is given by (4.92) then one of the differences i, — i, [ =0,..., k
with i, =0 and &., = n will be at least (m,+ 1)"'(In £ )* and so it will be bigger than
2(ne)'+1. Hence by Corollary 4.1, if i, —i=2(Ine)’+2 for some l=
0,...,k—1 then
(4.93) P a(y,nx, Q)ssupJi(e”im—ii—1,z, U, @)= Cue”

for some C;;> 0. On the other hand, if n — i, =Z2(In ¢’ + 2 then we apply (4.52) to
obtain

(4‘94) Pl‘l ik(y, n, x’ O)é 2P|21 ik(Y) n-— Ns, x, I)Ds mes O

where N, = integral part of 2(Ing)* +2).
Since

k' h<---<ig

one derives from (4.91)-(4.94) that

P{x:€ Q}=D;smes Q + Cyue” Z (:)+smesQ
k=1

(4.93) =5D; mes Q +¢*"

provided & is small enough.
By the Chapman~Kolmogorov formula

Pxi€ Qb= [+ [ P dy)P* (3, dys) - P* (s, dyu )P (s, Q)

where P°(z,T) is defined by (0.3). This together with (0.2) and (4.95) yield
(4.96) 1 (Q)=5Ds;mes Q +¢£”
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Since the distribution P, {x. € dy} has a density and so u°(dy) also has a density,
then p°(Q)= p®(int Q) where int Q denotes the interior of Q.

The family of measures p° is compact, i.e. from any sequence one can choose a
weakly converging subsequence. Suppose that w“—» u, then by (4.96)

(4.97) p(nt Q)= li',-‘linf p(int Q)= 5D; mes Q.

Since (4.97) holds for any closed interval Q disjoint with 7, then it follows from
(4.97) that the measure p is absolutely continuous on I\ J, with respect to the
Lebesgue measure on I According to the Introduction (see (0.4)-(0.5)) the measure
w is fi-invariant.

On the other hand, according to [6] the only f,-invariant measure absolutely
continuous with respect to Lebesgue measure on I is the measure yy, constructed in

[6].

Therefore to prove our Theorem it suffices to show that
(4.98) r(9,)=0.
For this we shall need

Lemma 4.4. There exist Cy, 8, >0 such that if 8 = 8, then
(4.99) P.{x:€ Us (T2} = Culmes U, (9,))"”

provided n is given by (4.92) and ¢ is small enough, where

Us(T)= U Us(2).

zEF,

Proof. Without loss of generality we can assume that
(4.100) 8 =1idist, 7,) = &,.
For any Borel set Q define
(4.101) JE(80, k, 2, Q)= P,{x{ & Us() forall I =0,...,k — 1 and x{ € Q}.

Employing Lemmas 2.6 and 2.7 in place of Lemmas 2.4 and 2.5 in the proof of
Lemmas 4.1, 4.2 and Corollary 4.1, one can see for k = (In¢)’ that

4.102) T80, k, z, 0)= C,smes Q

for some Css > 0 independent of Q C U5 (9,), z € U; (9, ) and § satisfying (4.100).
Notice that when x7 stays all the time in I\ Us(3) the situation becomes easier than
in Lemma 4.1 since according to Lemma 2.1 the map f, acts in I\ U(3) as an
expanding transformation.

Since mesJ, =0 (see [6] Lemma 3.9) and J, is a closed set then
mes(U; (9,)) { 0as 8 | 0, and so if 8 is small enough then mes(Us (7, )) = 1/2C.s.
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Thus by (4.102),
P {x{& Usy@)foralll=0,...,k—1and x; € Us(9,)}
(4.103) . o 1
= ]6(80, k, Z, Ua(JA))g C45mes Us(g;)§§

provided k Z(Ine)’ and ¢ is small enough.
Modifying slightly arguments of Lemma 4.3 one can see that

PAxSE Us (T} =P Ax;i€ U~rB)foralll =4(Ine) and x5, € Us (T, + 7"
(4.104)
By Corollary 4.1,

(4.105) PAxig UG foralll = Mne) and x;€ Q}=2D;s; mes Q
provided k Z3(In )" and Q satisfies (2.31). Besides, by (4.103)
4.106)  P.{xi& Uy@)forall [ =0,... k}S @™  if k=i(ne).
Next, by (4.104)-(4.106) and (4.52) one can write
P {x:€ Us(9.)}

= 2 PAxi# U (@)if n~k = 1Z}(Ine) and x5 € dy}
1/3(n &) zk =1 Us ((12\Ue14(112)
(4.107)
x J’ Q5(2)T 80, k =1, 2, Uy (T2))dz + Ceone " + ne” + n @)™
NUs(112)

4
§ nEy + n(%)(ln:)/4+ C«,nem

+ C47 2 J qu(z) J 12(6()7 k - 1, Z, U,s (gA ))dy dz

4 >
13(ne) =k =1 U.so(llz)\Ur‘“(lﬂ) NUs(172)

where n is defined by (4.92) and Cu, Ci7 >0 are independent of x, y, n and 6.
Employing (4.70) and changing variables v = f,y one obtains

aie) [ Jdonk=1,2,Ui(T)dy dz

Us(1/20\Us 114(1/2) I\Us (1/2)
=Ca f QU A B — o[ dy f T80, k ~ 1,2, Us (9)))dz
Usasd(fa (/2N Uaae ¥2(f2 (1/2)) N\Us(1/2)
(4.108)
=Co f L @) — 2| T&(80, k — 1, 2, Us (91))dz

Usas§(fa (12)\Uzae (i (1/2))

= CuwJ5(80, k — 1, U; 9.
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where we could integrate q.(z) in v without |f,5)— v|"” since qi(z) varies
essentially only when v € U,-#(z) where B8 >0 can be taken small, and if, in
addition, v& Us,.'=(f, (3)) then the ratio |f, G)— v|/|f, §)— z] is close to one.

Let hi(8o, [, z, v) be the density of J&(8o, I, 2, Q), i.e.

Ji(60, 1,2, Q) = f hi(8o, I, z, v)dv.
Q

Define m(z)=min{l: |f,G)— z||(f\")(z)| = &,}. Then if k —1> m(z) one has
12(807 k - 1, z, U5 (91 ))

= j dvohi(8y, m(z),z,v) J hi(8o, k —m(z)—1, v, w)dw.

I\Usy(112) Us(9)
(4.109)

Employing the argument about pseudo-orbits similar to the inequality (4.5),
which says that it suffices to take into account only random trajectories staying in
the £'®-neighborhood of images fiy for certain points y, one concludes that

(4.110) hi(80, m(z),z,0)= h3(c"™* m(z);z,v; y)+exp(— £ ™)

for some a,>0 where y = U,-#(z)N f,"“v and

h;(sl_ﬂ,l;z,v;)’)z [ e f quz(Zl)'"qf,\z,-l(v)dzl"'dzl—l-

UeT-8(fay) U =B 3 y)

Using Lemma 3.3 in the same way as in the proof of Lemma 4.1 one can see that
(@111) ki Lz, 05y) = Coe  [(FY ()] expl - aue 'z -y |}

for some Cs,>0 independent of ¢, I, z, v and y.

Now taking into account (4.110), (4.111), the argument (as above) that
¢ exp{—ase '|z — y|} can be integrated in z without |f, 3)— z | and that the
difference |m(z)— m(y)| is bounded when z¢& Us,.2(f, 3)) and |z — y | = £**, we
obtain

hi(60, L v) = f @)= 2 [R50, I, 2, v)dz

Uonsir (DN Uz, 20 (112))
(4.112) = CalA@ -y ()]

§ CSZ‘Yz—llfIA-ﬁ-i(%)_ v I—I!Z

where y(v)= U.-#(z)N fi'v; Cs;,C52>0 and y,> 1.
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If I = m(y(v)) then one can see from (4.112), Lemma 2.6 and the definition of
m(y(v)) that

(4.113) h3(8o, L, v) = Csry3'

where Cs; >0 depends only on 8,. Hence

J3(80, k =1, Us (93))

(4.114) =Cs; J 3" dy j hi(8o, k — m(y(v))—1, v, w)dw

{vENUs (1123m(y(v)<k—1} Us(7»)

+Caya* ™" f /36— o[ dv +exp(— ™).

Us(T2)
But
£l do
Us{I)
= [ 1ne-erraes | 756 - 0["dv
{v:If X (1/2)-v=mes Us(Fa )} {v:|fX@/2)-v|Zmes Us(Fa ), v € Us (T )}

= 3(mes U (7,))"".
(4.115)

To estimate the first term in (4.114) we shall use, as in (4.110), the argument
about pseudo-orbits to obtain that

Bi(Bo, k= m(y (@)~ 1,0,w)= S hile' Pk = m(y() = 1,0,w: y) + exp(— ™),
(4.116)

where {y}=Uo+(®)Nfi*"Pw such that fy&U,G) for all j=
0,....k—m(z)—1.

Notice that |m(y(v))— m(y(y:))| = Cs, for some Cs.> 0 independent of v and i.
Then by (4.111),

'Y;'"(y(v»h f(ao, k- m()’(v)) X w)dv
{vENUs(1/2),m(y(v )<k ~1}
4.117)
= Css‘yi"'my’» 2 I(ff_"'(’("”'l)'(yi)l_' +exp(—¢ —%B)

for some Css>0.
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It is easy to see that

Z [ oo Yy 'Smes{x EI: fix € Usn/z(%) for all [ =0,....k —m(y(y))—1}

(4.118) = 5k moont

for some y;>1 where the last inequality follows from Proposition 2.1 of [6].
Collecting (4.115), (4.116), (4.118) and (4.119) one obtains
15(80, k- l, Us (.O/—A )) = Cs@'y;(k_l)((mes U,s (\.o/-A ))”2 + mes U,s (\OTA ))

where vy, = min(y., ¥;) and Css> 0; this, together with (4.107) and (4.108), proves
(4.99) provided ¢ is small enough.

To complete the proof of (4.98) we employ (0.2), the Chapman-Kolmogorov
formula (4.96) and (4.99) to obtain
(4.120) /.Le (Us (gA )) = Csl(mes U5 (gA ))IIZ'

If u*—> u then by (4.120),

(4.121)  p(9.)= plint Us(9,)) < liminf p(int Uy (7)) = Coi(mes Uy (7.))".

Since mes 7, =0 (see Lemma 3.9 of [6]) then mes U;(9,)—0 as § -0 and,
together with (4.121), this gives (4.98).

Appendix
We shall prove here the following

Proposition A.1. Let 6,,...,0, be independent random variables with dis-
tribution functions

y

P{6. = y}= j r.(z)dz,

—o

where the number of points of discontinuity of each r,(2) is bounded by a number N
independent of k, on each interval of continuity r, (z) are Lipschitz continuous with a
constant L and

(A.1) r(z)= Ce "

with some C, a > 0 independent of k. Then there exist constants K, B > 0 depending
onlyon L, N, C, a but independent of n such that for any non-zero numbers a,, .. ., a,
the distribution function of the random variable

(A2) Prte = (‘;én ai)_m 3 a6~ E6)
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has the derivative, i.e. the probability density function, satisfying
(A.3) rvein(z) = Ke P

where E6, = |__zr.(z2)dz is the expectation of 6,.

Proof. Without loss of generality we shall assume from the beginning that
E6. = 0 for all k. We shall first prove the integral variant of the inequality (A.3) and
then, employing the Fourier transform, we shall see that r®* has a bounded
derivative for n 2 3 which will imply Proposition A.1.

Lemma A.1 (cf. [7], §4, ch. III). There exist K,, 8, >0 such that
(A4) P{| W

> Y}§ K‘eﬂﬂly

for any y 2 0.

Proof. By (A.l),

(A.5) El67|= f Clz|me™"dz =2Cf Zme ™ dz =;27C+—1 mt.
—x 0
Put
R =1/2
(A.6) o =< Z a;) la.| and X, = o6,
1=k=n

then by (A.S),

3
Ee"‘k§1+5 EXi+L§!-E|Xk|3+-'-

o

=1+2Ca™" Y |t|"ora™"

2Ctoia”
1-{t|owa™

=1+
provided |¢] is small enough. If || = a/2 then 1~|t|owa™ =} and we can write
(A7) Ee™ =1+4Crfoia™ < '
Thus for 1, y 20,
(A8) Pz y)= Pl oz 7} 5 o [] Be™ = o et
k=1

where we have used the independency of X,, k=1,...,n and the relation
2i-1a:=1. Furthermore for ¢t >0,
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P{\Ilal _____ o < -y}= P{(__t‘l,al ..... ﬂn); ty}
(Ag) — P{e—r‘{l“r" “n = ezy}

n
- — - 2,3
<e ryll Ee( r)Xkée ryeACza .
k=1

1

Taking t = a/2 in (A.8) and (A.9) we shall get (A.4) with 8, = a/2 and K; =<,
proving Lemma A.1.

Next, we shall need certain estimates of the Fourier transform

@)= [ e*n()az

—

of densities r; for real {. We shall start with the estimate near zero which is simpler.
By (A.1) one has the following estimate for the m-th derivative of ¢; at zero,

m m 2Cm!
eM(0)= f |z | (2)dz < am"fl .
Since we suppose that
(A.10) E6, = f zr.(z)dz =0

—x

then for |{|< a it follows that

=200 5, (&)= 1o (2EHLy).

m=3

(A.11)

‘Pk(g)"l'*"{z_z

In particular, for a real { satisfying

(A.12) l(l<geras
we have
(A.13) len(O|=1-¢/4.

Estimates for big ¢ are a little bit more difficult. We shall prove the following
result.

Lemma A.2. There exists a constant K, > 0 depending onlyon L, N, C and a
such that

(A.14) o (] s KaroBld]

provided |{|>2.
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Proof. We can write

—a"tiog|¢] @ a"logl¢]
(A15) @ ({)= j e“n(z)dz + j e“n(z)dz + j e“n (z)dz.
o & logly] —a"T1og¢)

In view of (A.1) we can estimate the first term in (A.15) by
—alog¢]
(A.16) C f e""ldz = CJ|{].
The second term in (A.15) has the same estimate.
To estimate the third term in (A.15) consider the points of discontinuity for the
function r, lying between — a'log|{|and a 'log|{|. Number them in increasing
order zi,..., z;; by assumption ! = N. Thus we can write

a"tlogj¢)
(A.17) l j e“n (2)dz

—aVloglgl

' Zis1
éZ' j e“r (z)dz
/=0
Zj

where we put zo= —a 'log|{]| and z.., = a 'log|{|. Divide the interval [z;, z;.1]
into subintervals of the same length 27/|{|, except for the last interval whose
length does not exceed 2m/|{|. Let A be one of these intervals of length 27/|¢],
then by the Lipschitz condition

f e dz

A

where ri = [, . (z)dz and we take into account that f, e“*dz = 0 since the length of
A equals 27/|{|. The total number of these subintervals in [z, z;.,] equals the
integral part of (1/27)(z., — z;){ so that the sum of our estimates in (A.18) does
not exceed (27L/|{|)(z;+1 — z;). The contribution of the remaining subinterval with
the length less than or equal to 2a/|{| does not exceed 27wC/|{|. Therefore

(A.18) =47°L/|Lf

fe“’rk (2)dz éflrk(z)—rﬁldz +ra
A A

2m

é' ,(C+L(z,+. )

(A.19) l f e“r (2)dz

By (A.17) and (A.19) we can estimate the third term in (A.15) by

2uNC
[¢ log|¢|

Since the first and second terms of (A.15) are bounded by C/|{| we shall get (A.14)
with

l(NC+2La"log|{|)=l—0-|g§|—|Q( +2La").

(N +2)C -
——(——-Llogz +2La

2

completing the proof of Lemma A.2.
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Next, we shall need an estimate for ¢, (¢) for the intermediate zone, i.e. for ¢ not
very big and not very small.

Lemma A.3 (see [7], Theorem lin ch. I). Let ¢({) be the Fourier transform of
a probability distribution G, i.e. ¢({)=[ _e“dG(z), c<1 and b are positive
constants. If |@(¢)| = c for |{|= b then

(A.20) le@l=1-25 2 for|z]<b.

Proof. Let X and X be two independent random variables with the distribu-
tion G. Then, as is well known, the random variable X — X has the probability
distribution Q whose Fourier transform equals |@({)[*. Then we have

1-le@F= [ (1-cosgz)a02)
Clearly,
1—cos {z =2sin’ %zi(l —cos2{z)

and so

1-le@I=41-]e())
which implies
(A.21) 1-le@"DF=4"1-]e@))

for any positive integer m.

For ¢ =0 the inequality (A.20) is clear. Let now 0<|{| < b. Choose n so that
27"p =|¢|<2™™*"'b. Then by Assumption | ¢(27¢)[* = ¢” and so by (A .21) it follows
that
1_ 2

4bf &

1__ 2
le@)F=1--F—=1-

Hence

< _1_C2 2

proving Lemma A.3

Now we come back to the proof of Proposition A.1. We are going to estimate the

variable ¥** defined by (A.2). Since the random variables 6,,...,0, are
independent then
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(A22) o) = I1 or (aud)

where o, is defined by (A.6).
Let

%({)E{k: oy |§,<8Ca-:a’} ,
W)= {k: ﬁ%ml{l<max (2, Blg%lﬂ)} and

H(0)= {k: ou|¢]Z max (2’ B]g%;)}

where we put #:({) =0 if a*/(8C+ a’)Zmax(2,|{|/log|{]). Since Zi-, oi=1
then at least one of the following three inequalities is true:

2 1 2 1 2 1
(A.23) o3, ; ogr=3 or oLZ3.
keFH1({) kEH2L) kEX3(L)

We shall consider three cases. Suppose that the first inequality in (A.23) is
satisfied. Employing (A.13) for k € X;({) we have from (A .22) that

lo@l= I1 le(ad)l

H1(¢)

(A.24)

2 o2
a

o
= ] (1-9)= 1 enseen
keHi(l) 4 kEXi(a)

a

since l—a=e "
To estimate ¢ “"* in the second case notice, first, that one can choose K;>1
such that

K:|¢|"logl¢=1 i |[{[ZKs
and so by (A.14),
(A.25) (D=L i L]ZKs.

Applying (A.20) when K;>|{|=Z a*/(8C+ a’) and (A.25) when |{|ZK; one
concludes that

- (1-K5") Yo
(A26) I(Pk ({)l§max (K;”z, I—SIa(g(Sc_'_;;)z =y <1

provided |{|Z a*/(8C + a”). Hence
(A.27) e @)=y if k € Hal().

Suppose that the second inequality in (A.23) holds true. Since
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o <max(2{{7, (log{¢ )y if k € HAE),

then the number »,({) of elements in H>({) satisfies

= o< w({)max(4|{ |7, (log|¢])7),

1

3 keXl)
1e.
(A.28) v:({)>3minG| £, (log| 1)),
By (A.22) and (A.27) we see that

(A.29) le= @)= ]I lecod)=y.

AH2(L)

From (A.28) it follows that for each [>0 there exists K,(I)>0 such that
vy = K,()|¢|”". In particular, one can write

(A.30) fo® (D)= KB [

Finally, we shall consider the case when the third inequality in (A.23) holds true.
When k € %#5({) we can estimate ¢, (0.{) by means of (A.14) to obtain

le= ()= I1 lec(ad)l

H3(8)

(A31) »

=K,

I{—v;(f) I_I )U;]log(aklgl)

kEH3(L

where »3({) is the number of elements in H3({). Since 1> o =(log|Z])™ if
k € %x(¢) and log2 =log(ox | {|)=log|{|, then we derive from (A.31) that

v3({)

(A.32) lem ()= K¢

There exists Ks> 0 such that

»3({) 2v3({)

(log|Z]y ™.

sup (K[ £ log|2ly) =7 <1.

Then (A.32) implies

1 if I{I < K,
(A.33) [ (¢)| =

£ i |¢|2 K.
In particular, if »({)=3 we get the estimate
(A34) Lo =g if [{|ZKs.

The case vi({)=1 or 2 must be treated separately. In this case there exists
ko € H3({) such that o = 1/V6. For convenience of notation only assume that
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ko= n. Then we can write, using (A.13),

3

R u n—1 1 —
"(Z)=‘[P{k2=t 0.0, edY}an(Zo_" )

—o

(A.35) _ +

{y:lz—yl<izl2}  {y:lz—ylz|zl2}
n—1
gK\/EP{ , D o-kOk' >|z|/2} +KV6e 2,
k=1

Using the notation ¥ "~ defined by (A.2) we have

"~ n-l 172
2 okok = (2 Ui) '\If”""""n—l.

k=1 k=1
Since 2;2) 02 =1, then employing Lemma A.1 we conclude

n—1

s akok’ >|z |2} = P> |2 ]2)

°|
k=

(A.36) = Kle-B,|z|12.

Now (A.35) and (A.36) give (A.3) directly for the case when there exists k, such
that i, = 1/V6. If this is not true then @ ™ satisfies one of the inequalities
(A.24), (A.30) or (A.34). These inequalities show then that there exists a constant
K> 0 independent of ay,...,a, and n such that

(A37) [ 1ehem@)ldr = K<
Using the inverse Fourier transform formula we see that

ra, ..... a,,(z) e‘iIZ‘D“I ----- “n({)d{

=1L
2w

é‘ﬁ.s

and so, by (A.37),

(A38)

d ..., 1
dZ r (Z) §21T K(,.

From (A.4) it follows for z =0 that

Kie "z P{z <W¥™r %=z + ¢ 77

z+e P22

(A.39)

i
—

~

Ky

3

~
-

o

|
-

e s LY B, z/2 _____K(’ Bz
=T Z)e e
() Y
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since, by (A.38),
Ir(y)—r(2)| 525;6 e P wheny€[z,z+e "]
Therefore
a a K a2
pire "(Z)§ (Kl+ﬁ) e B2/2

completing the proof of (A.3) for z Z 0. For negative z the proof remains the same

B,2/2

by considering the integral from z —e” to z.
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