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Abstract. Let p." be invariant measures of the Markov chains x~ which are small 
random perturbations of an endomorphism f of the interval [0, 1] satisfying the 
conditions of Misiurewicz [6]. It is shown here that in the ergodic case/z" converges 
as e -~ 0 to the smooth f-invariant measure which exists according to [6]. This result 
exhibits the first example of stability with respect to random perturbations while 
stability with respect to deterministic perturbations does not take place. 

O. I n t r o d u c t i o n  

Let  f be a C 3 map  of  the interval I = [0, 1] into itself. Cons ider  a family of  

probabil i ty measures  0 ~ (x, dy)  on I given for every  x ~ I and e > 0 small enough.  

Define the Markov  chain x~, n = 0, 1 . . . .  in the following way: if x~ = x then x~§ 

has distr ibution Q'([x, dy). The Markov  chains x~ are called small r a n d o m  

per turbat ions  of the t ransformat ion  [ if for  each cont inuous  funct ion h on /, 

(0.1) limsup ]f ,_o x~, O~(x'dy)h(y)-h(x)l=O' 
I 

where  we shall consider  the interval I bo th  with the identification of  endpoints  and 

without  it. 

We shall say that  a probabil i ty measu re /~"  on I is an invariant  measure  of  the 

Markov  chain x~ if for  any Borel  set F C / ,  

(0.2) ~ I.L" (dx)P ~ (x, F) = ~ ( F )  

I 

where 

(0.3) P" (x, r)  = O" (rx, r). 

It follows easily f rom (0.1)-(0.3) (see [5]) that  if ~"  are invariant  measures  of 

small r andom per turba t ions  x~ of the t ransformat ion  f and 

(0.4) p."---*/z in the weak  sense (/t "' " , /z ) for some subsequence  e~---~0 

then p. is an invariant  measure  of the map f, i.e. for any Borel  set F C / ,  

(0.5) ~ ( i f ' r )  = ~ (r) .  
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If the limit measure /x  in (0.4) is the same for any subsequence e~ ---> 0 then it is 

said to be stable with respect to random perturbations. 

We shall study here the limit behaviour of the measures/x" in the case of maps f 

satisfying the conditions of Misiurewicz [6], i.e. having no~-positive Schwarzian 

derivative, no sinks and trajectories of critical points stay away from critical points. 

These mappings f possess absolutely continuous invariant measures (see [6]). For  

the most widely considered one-parameter  family of maps x - ->4Ax(1-  x) the 

conditions of [6] are satisfied for a set of parameters A having cardinality of the 

continuum. 

We shall prove in this paper that if the transformation f~ (x) = 4Ax (1 - x) satisfies 

the conditions of [6] and it is ergodic with respect to its absolutely continuous 

invariant measure p: then the limit measure in (0.4) is always t# for a wide class of 

random perturbations. The proof follows the lines of [5] with modifications due to 

the fact that our  transformation is not uniformly hyperbolic. The exact conditions 

on perturbations will be discussed in the next section. Still, we remark here that the 

following is a particular case of our  model. Let A1, A2 . . . .  be independent random 

variables with the same distribution having a smooth density concentrated on 

[ - 1 , 1 ] .  Suppose that ,~ is a parameter  such that � 8 9  and the 

map x---->4Ax(1-x) satisfies the conditions of [6] mentioned above. Then for 

e < 1 - ) ~  the composition of independent  random transformations f~§ ,fx§ . . . . .  

generates a Markov chain 

which belongs to the class of random perturbations of/x satisfying our conditions. 

The case of ,~ = I must be treated in a slightly modified way. 

The stability of measures/x: with respect to random perturbations is especially 

interesting in view of the fact that in general there is no stability with respect to 

deterministic perturbations in this case. Indeed, consider the family of transforma- 

tions [A (x) = 4Ax(1 - x) with a close to 1. Clearly, [~(x) satisfies the conditions of 

[6] and it has absolutely continuous invariant measure with the density 

1 (x (1 - x))-1/2 p(x )  = ' ~  

with respect to the Lebesgue measure on [0,1]. Define n~ = min{n > 1: fT,(�89 => �89 

Since ,1 �9 -~1 1 f~(~) = 0 for all n > 1 then If fA (~) > ~ by the continuity one can find/3 (a)  such 

f#a)O) Therefore-�89 is a periodic point of f~(~ and the that l > / 3 ( h ) > h  and "~ 1 =�89 

corresponding periodic orbit is an attracting one since f[(~)= 0 for any A. 

Hence we have found a sequence A~ 1' 1 such that any f~, has an attracting 

periodic orbit containing �89 and only one point of this orbit can be to the right of �89 

The invariant measure v~ supported by this periodic orbit is stable with respect to 

random perturbations since the complement  of the basin of this periodic orbit has 
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zero Lebesgue measure (see [3], Proposition II. 5.7). On the other hand, these 

measures ~,~ do not converge as A~ ~ 1 to the smooth invariant measure o f / i  since 

these periodic orbits have only one point to the right of ~ and so all weak limits of 

the corresponding invariant measures have support in the interval [0,�89 

One can assign to any random perturbation some point of the coordinate plane 

where the x-coordinate measures the deterministic part of the perturbation and the 

y-coordinate measures the random part of the perturbation. In this setting our 

results can be interpreted in the way that when perturbations approach zero along 

any straight line passing through zero except the x-axis then invariant measures of 

perturbations weakly converge to the corresponding absolutely continuous meas- 

ure/x~. On the other  hand, if perturbations approach zero along a curve which is 

close enough to the x-axis then the convergence may not take place. 

Since computer  experiments are always subject to random errors our approach 

may explain why computations show whole subintervals of parameters A without 

attracting orbits of the maps f~, i.e. exhibiting the behaviour as if the characteristic 

exponent  of f~ is positive. 

We shall prove our results for the one parameter  family of transformations 

/A (x) = 4)tx (1 - x). The reader can easily check that all arguments go on for more 

general one parameter  families of transformations of an interval of the type 

considered in w of [6]. These should be a family {f~}~10.1; of unimodal maps of an 

interval with negative Schwartzian derivative having no sinks and the critical point 

should not belong to the closure of the set of its images under f~,, i = 1, 2 , . . . .  

Since this paper was first written we have received the manuscrint of Collet [2] 

which has another  model of random perturbations of transformations of an interval 

which is a partial case of our scheme. Actually, the same model appeared earlier in 

[1] for the case of random perturbations of Lasota-Yorke type expanding 

transformations. In this model one makes the rather strong assumption that the 

density q~(y) of the distribution O + (x, dy)  depends only on the difference y - x, i.e. 

it is translation invariant. Apart  from the obvious reason that this type of 

perturbation cannot be considered, in general, in the case of dynamical systems on 

manifolds, the model in question does not include also the case of random 

perturbations of the parameter  ;t in f~ which we have discussed above. The 

translation invariance of q~(y)=q+(y-x) enables one to consider the 

Perron-Frobenius  operator  corresponding to the transition probability of the 

Markov chain x~ which turns out to be in this case just the convolution of q+ with 

the Perron-Frobenius  operator  of the map f~ itself. This simplifies the proof 

enormously since instead of studying the dynamics of the Markov chain x ~ which is 

necessary in our case, it suffices to establish some properties of the 

Perron-Frobenius  operator  similarly to the proof of existence of a smooth invariant 

measure for a map f~. 

It seems that our  proof with some additional work can be carried out for the 
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maps satisfying Jacobson's conditions (see [4]) which hold for the set of parameters 

A of positive Lebesgue measure. On the other hand, it is not clear whether our 

theorem has any connection to the fact that the parameters A for which f~ satisfies 

Misiurewicz conditions are points of Lebesgue density one for the set of parameters 

producing maps with Jacobson's conditions and so having absolutely continuous 

invariant measures (see [4]). 
The general ideas of this paper were discussed by the authors in July 1983 at the 

University of Maryland when both authors were supported by N.S.F. Grant 

MCS82-04024. The preliminary version was revised in Spring of 1984 while both 

authors were visiting the Mathematical Sciences Research Institute at Berkeley. 

1. A s s u m p t i o n s  a n d  m a i n  r e s u l t s  

Consider a family of non-negative functions 

{rx (~),  x e l  = [0,11,  ~ R '  = (-  ~,~o)} 

satisfying the following Assumption A: 

(i) fR' rx (~ )d~  = I. 

(ii) There exists Co, al > 0 independent of x such that 

(1.1) r~ (~) =< Coe -''l*l. 

(iii) There exists C1 > 0 such that if 

v~---{~: rx(~)> 0} 

then for any x, y E / ,  ~ ~ V~ and ~ E V~ one has 

(1.2) Ir~ ( ~ ) -  r,O))l  -< c,(Ix- y l+l~-  ~1). 

(iv) There exists Ca > 0 independent of x such that if 

OVa(a) is a 8-neighborhood in R '  of the boundary OV+. of V~ 

then 

(i .3) f r~(~)d~ C~8 
ave(a) 

for any 8 >0,  and if r~(~)#O but ry01)=O then 

(1.4) ~, ~ ~ a v + ( G ( I x  - y l + l ~ -  n I)) 

provided x and y are close enough to each other. 
In fact, for the proof of Proposition 3.1 which we shall give in the Appendix, we 

shall need the following condition which is stronger than (1.3). It seems that this 

condition is not necessary for the truth of Proposition 3.1 so we add it with some 

reservations. 
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(v) For each x E I the number of points of discontinuity of r~ (~) in ~ is bounded 

by a number N independent of x and on each interval of continuity r~(~:) is 

Lipschitz continuous in ~ with the constant C~. 

The conditions (iii) and (iv) enable us to consider the functions r~ (~) with 

compact supports V~ having discontinuity on &V~. Nevertheless the condition (iv) 

requires that the domains V~ depend on x in a continuous manner. In particular, 

r~ (~) can be the density of the uniform distribution on some interval depending on 

x, or in the simplest case, independent of x, say ( - 1 ,  1). 

For the sake of simplicity we shall consider only quadratic maps 

(1.5) 

Define 

(1.6) 

[~ (x) = 4Ax (1 - x). 

f+). 

Throughout  this paper  we assume that the probability distributions O ' (x ,  dy)  

have densities q : (y)  with respect to the Lebesgue measure, i.e., for any Borel set 

F C L  

(x, F)= ( q:(y)dy. (1.7) Q, 

r 

We suppose also that for some positive a2 < 1 and any x E [e ~, 1 - e~:], 

(1.8) q:(y)<--(l+e"2)e-'rx(~e x ) provided ]y - x ]-< e ~-" �9 

The assumptions on q : (y)  for [x ]<  e a: or [1 - x [<  e ~-~ will depend on the type of 

boundary conditions we shall accept. 

For the sake of simplicity we shall consider in this paper only periodic boundary 

conditions, i.e. we shall identify the end points 0 and 1. This means that we assume 

(1.8) to be true for any x E I and 

(1.9) q:(Y)<-(l+e"2)e-'r~( y-x+-l)e p r ~  

where plus and minus in the last inequality corresponds to plus and minus in the 

first one, respectively. 

For x, y E I define 

(1.10) dist(x, y) = min(] y - x 1, ]y - x + 11, ] y  - x - 11). 

We assume also that 

, < ( -  a--z2 dist(x, y) )  (1.11) q x ( y ) = e x p  e 

if dist(x, y ) >  e ~2 and e > 0  is small enough. 
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R e m a r k  1.1.  Another  boundary condition which can be treated by our 

method and for which the Theorem below remains true is the reflection condition in 

the endpoints 0 and 1. This means that (1.8) remains the same for either 

x ~ [ e  ~ - ' , l - e ~ : ] o r x < e  ~ : a n d y _ - > x , o r x > l - e  ~ a n d y - < _ x . B u t i f x < e  ~ a n d  

y < x then one assumes 

( ,)) (1.12) eq~(y) rx +rx - ( x + Y  _ - - l + e "  
e 

and if x > l - e  "-~ and y > x  then 

(1.13) eq;(y)  rx + rx e = 

In this case (1.11) should be replaced by 

xl) 
if l Y - x I > e "-~ and e > 0 is small enough. 

For the case of quadratic maps of the form (1.8) Misiurewicz [61 proved that i f / .  

has no stable periodic orbit and 

(1.15) �89 ~ ~-. 

with ~-~ defined by (1.16) then [~ has exactly one absolutely continuous invariant 

measure /xr~ which is ergodic. 

Now we can state our main result 

T h e o r e m .  Suppose that (1.7)-(1.9), (1.11) and Assumption A are satisfied. 

Assume the transformation fx has the form (1.5), has no stable periodic orbit and 

(1.15) is true. I f  iz ~ is an invariant measure of the Markov chain x*, defined in the 

Introduction then 
w 

(1.16) lz ~ ~ ttt~ as e ---~0, 

Where #t~ is the absolutely continuous invariant measure of [~. 

2. Auxi l iary  l e m m a s  about  the t rans format ions  f~ 

The following result was proved in Theorem 1.3 of [6]. 

L e m m a  2.1.  Assume fA has the form (1.8), has no stable periodic orbit and 

(1.15) is true. Then for any 0 > 0 there exists Nip > 0 such that if 

(2.1) If' x- l>-p [ o r a l l i = O ,  1 . . . . .  M p - 1  

then 
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(2.2) (f~")'(x) >= Yo 

for some Yo > 1 independent of x and p. 

We shall need also the assertion which is complementary  to the above lemma. Its 

proof  was communica ted  to us by M. Misiurewicz. 

L e m m a  2.2.  For any 8 > 0 there exists ca bounded away from 0 if 6 > 8 > 0 

for some 6 > O, such that if x ~ I and 

dist(f~x, W~ ) => 6 (2.3) 

then 

(2.4) I (f2)'(x)l ~ c~/7 

for any n >- 1, where y, > 1 is independent of x, 6 and n. 

P r o o f .  Fix po > 0 small enough. Let  yt = f~x and i~ < �9 - �9 < ik be the numbers 
I ^ 1 i t - 1 1 

when y~,C U,, (_0 and it = min{l > i,: y t ~  U,.(f~ (~))}. Then 

l(f~ )(yt,)l ~ y :  (2.5) ,, -,,, it -/, 

for some y2 > 1 independent  of x and j, provided po was chosen small enough,  and 

where ( )' denotes  differentiation. Indeed  

[f~(Y,t)[ = 8A 11- y,tl (2.6) 

and 

(2.7) dist(y~,+h f(1)) = 4A 11- yij 12. 

Then it is easy to see that,  for some c3 > 0 independent  of j, 

(2.8) C,11- y,, I-2---I I - -> c ; ' l l -  y,, 1-2. 

On the other hand,  by L e m m a  2.1, 

(2.9) dist(y,,-~, f'~(1)) -> 6".~'$~-' dist(y,,.,, f, (I)) 

for all / = 1  . . . . .  / j = i ,  where C > 0  and % > 1 .  Therefore  ( / j - i ~ ) i s  of order  

Iog11- Y~t [-' and so (2.8) implies (2.5). 
To consider the t rajectory between the t imes / j  and ii+, we shall use the following 

assertion: 

if [ f k y - 1 1 >  [Y-�89 for i = 1 . . . . .  m -  1 andlf~'y-�89 [ y - � 8 9  
(2.10) then [ (f~")'(y)[ --- y.7 

for some y . , > l  independent  of y and m. In particular, if [fAy-�89 then 

[f;(Y)I ------- Y.s. 
Before proving this s ta tement  we shall use it for the proof of our  lemma. 
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Since y~j+t~ U,,,(�89 l = 0 , . . . ,  is+l-/j - 1  and y~j+, ~ Uo,,(�89 can part i t ion the 

trajectory y~.r, l = 0 , . . . ,  i j+~-/i into the pieces such that  the last point  in each 

piece will be closer to �89 than the first one,  and all in termediate  points will be far ther  

from �89 than the first point. Hence  applying the assertion (2.10) we shall get 

i j + l - i  j I 
(2.11) I f ,  ) (Y,;)I = "*'-" 3'3 " 

The same argument  is valid for the trajectory y0, y~ . . . .  , y,, and so 

(2.12) I (f: ') '(x)l-> 3';'. 

Consider the last piece of the t rajectory y~ . . . . . .  y,. If n > tk then we use (2.5) 

with j = k and L e m m a  2.1 for [k , . . . ,  n to get 

(2.13) ](fT-'k)'(y,k)l- C ~ ' ~  -r~ for some C 4 ) 0  

since yrk+~ U,,,(~), l = 0 . . . . .  n. 
If ik < n --< [k then we shall use the arguments  similar to the beginning of the 

proof taking into account (2.3). Then  one can see that for some C4 > 0, 

(2.14) I (f2-'3'(Y,k ) l ---- C~'81�89 Y,, I-'. 

On the other  hand,  by (2.9), there is C5 > 0, 

(2.15) 8,,_--- C ; ' . ~ - ' ~ - '  I-'_, - y,, I 2 

since n < [k. Now (2.14) and (2.15) yield 

(2.16) I(f~ '~)'(Y,~)I = C;'8(Y~/:) "- ' ' - '  with ~?s = 8~,'-'C.~C. 

Finally, collecting (2.5), (2.11}-(2.13) and (2.16) we obtain (2.4). 

Now let us return to the assertion (2.10). First, if (2.10) is true then there exist two 

periodic points p, and p2 having period m and so that pt ~ y =< p2 or pt ~ y f ~ P2 

where lY-�89 = IY ' - � 89  This is proved in Lemma II.5.6. of [3]. 
The negative Schwarzian derivative yields that 

(2.17) I (/7)'(p,)l ------ I (fT)'(y)l --< I(fT)'(p,JI 

or, alternatively, that  both inequali t ies are in the opposite direction. 

Now it remains to show that  there exists 3'4 > 1 such that  for any periodic point y 

having a period l 

(2.18) I (f~)'(Y)I->- r 

The proof is by induction. If f~y ~ U,,(�89 for all i = 0 , . . . ,  l then we apply Lemma 

2.1 to get (2.18) if l is big enough.  If l =< lo then there exists only a bounded number  

of such periodic trajectories and all of them are sources. So one can choose y~ > 1 
to satisfy (2.18). 

If ff, y E U,,,(~) and so f~+iy ~ U~,,(~) then one can parti t ion the whole trajectory 
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into pieces in the same way as at the beginning of the proof  of this l emma with x 

replaced by y. Now we repea t  the beginning of the proof  using the assert ion (2.10) 

for  the pieces of the t ra jec tory  y6 . . . . .  y,,+, with x replaced by y. Since ii+~ - ~ < l 

then we shall need  the inequali ty (2.18) for  per iodic  orbits with per iods less than l 

that  completes  the proof  by induction.  

We shall need a version of the shadowing proper ty .  

L e m m a  2 .3 .  Suppose that fx of the form (1.5) has no stable periodic orbit and 

satisfies (1.15). Let Xo . . . . .  x,  be an e~-pseudo-orbit of f~, i.e. 

(2.19) dist(f~x, X,+l) ~ e ~, i = 0 , . . . ,  n - 1 

where dist is defined by (1.10) and e > 0 is small enough. 

There exists C6 > 0 depending only on f~ such that if 0 <= 13 ~ a /2 and 

(2.20) [x,-�89 ~, i = O , . . . , n  

then one can find a point y E I so that 

dist(f~y, x, ) <= C6e ~-~, i = 0 . . . .  , n. 

Let  

(2.21) 

P r o o f .  

(2.22) p,, = dist(�89 J ,  ), 

then one  can pick p3 < �89 such that 

f^ (U~,,(')) n U2,,~(�89 = ~ .  

Let  ij < - - .  < ik be such that x,, @ U,,~(�89 j = 1 . . . . .  k and 

U I x , ~  ,,,(~) if l # i j ,  j 1 . . . . .  k. 

Put  also i. = 0 and &+, -- n. 

First, L e m m a  2.1 enables  us to employ  the s tandard a rgument  yielding the 

shadowing in the expanding case for pieces x,j+l, . . . ,  x,j+, of the pseudo-orbi t  to 

conclude that  there  exists Co > 0 independen t  of the pseudo-orbi t  x,, . . . .  , x. and 

some points yj, j = 0 . . . . .  k such that 

(2.23) dist(x,, , ,  f~ yj ) ~ C,, f "  

for  all ! = 1 , . . . ,  it+, - it and j = 0 . . . . .  k. 
Indeed,  if e is small enough then by (2.19) it follows that if x , ~  Uo~(�89 for  

i = l + 1 , . . . ,  l + M3,~t4- 1 then f~x, E U30~/,(�89 for  q = 1 . . . .  , M30,/4- 1. Using this 

a rgument  and L e m m a  2.1 one  can see easily that one  of preimages in f-~"J'-i~x,,, 

satisfies (2.23). 

Next ,  we shall p rove  that there  exists a point  y ~ f-/'y~ satisfying (2.21). 

By (2.19) and (2.23) it follows that  
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(2.24) dist(/~x,,,/,y~) <-- (Co,+ 1)e ~. 

Put rj = x~j- �89 then f~x~j = A -4Ar~ and so by (2.24), 

4 A y j ( 1 - y j ) = A  4Ar~+q,e~ 

Therefore  one can take 

with 

17'1 q =< Cp,+ 1. 

O) a \  1/2 

' { 1  - ~-q---~-/  (2.25) y, = ~ + rj \ 4Xr~ } " 

Since Ir, l>_-2Ge" and 2/3 = a, then by (2.23) if (76 is chosen big enough,  

E" 
dlst(y,, /~ yj_,) = Co~ i r, i (2.26) " "-"-' < - -  

for some C03>0 independent  of e, j and the points {x,} and {yj}. 

Since I rj I >=2C6e ~ then for e small enough it follows from (2.23) and (2.26) that 

dlst(yj,~)~-~p3 and dlst(/~ yj-~,~)=~p3 

and so 

(2.27) dist(yj, ~ ) >2 and " "-"-' 500 dlst(f~ Ys-,, 3-~ ) > ~P,,- 

Therefore one can employ L e m m a  2.2 to obtain that 

~x 

dist(f~ yj,f~ yj-,)_--< C7Co3"~j ~ yo l (2.28) -l i , - ~ ,  ,-I - e 

for appropriate preimages of Ys where l => 0 and (77 > 0 depends only on p,, in (2.22). 

It follows f rom here that  

k 

(2.29) dist(ff~-~J'*'yk, f~yj)_--< Cp3e ~-~ ~ C;-'y~, ' '-~§ 
r=i 

for corresponding preimages of yk where ! = ! . . . . .  ij+t - ij. 

It is easy to see that 

(2.30) ij+, - ij -> C~' log p3' 

where C ~ > 0  is independent  of p3, ii and- the  choice of points {x,} and {y,}. 

Therefore  if p3 was taken initially small enough then C, yS "~*'-~) < 1 and the sum in 

the right hand  side of (2.29) is bounded.  This together  with (2.23) and (2.29) yield 

(2.21) for some y ~ f-'~Yk and proves L e m m a  2.3. 
Next we shall need the following 

L e m m a  2.4 .  Let J C I be an interval such that f~ maps J homeomorphically 
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onto its image Q = fTJ and 

(2.31) inf dist(y, ~-~)= 6 > 0, 
y ~ O  

then 

sup I(fT,)'(x)l 
(2.32) ~ '  -<_ K~ 

i n f  j(f:)'(x )J 
x ~ J  

where K~ > 0 is independent of n and the interval J. 

P r o o f .  Let  J = (a, b), i.e. a and b are the endpoints  of J and deno te  at = f~a 
and bt = [~b. Then  by L e m m a  2.2 

(2.33) d i s t (a ,  bt ) =< c~ ~ yg~"-'~ dist(a . ,  b. ). 

1 Let  po be defined by (2.22) and take p , < z p o  small enough.  Wi thou t  loss of 

general i ty  we can assume that  6 <zOo' and 

(2.34) mes Q -< p, -< 6ce 

where  mes denotes  Lebesgue  measure.  

U , Le t  i t < ' " < i k  be such that  ei ther  a, ,EUp,( �89 or b~,E o , ( ~ ) , j = l  . . . . .  k but  

U a , ~  U,,(-~) and b ,~  o.(~) if I ~  i, for some j = 1 . . . . .  k. Let  

(J) v - l i  v - i i  1 . v - i j  " 
(2.35) vn = min{v > ij + 1: dist(f~ a~j,f~ (~))>= 6/4 and dlst(fa b#, ]at"-'Jt-~>~2jj = ~/4}, 

then 

= = 8 &st(at,fx(~)) < 8  o r  d i s t ( b ~ ,  t ~ < (2.36) e i ther  " l~ 

( i )  
for  l = ij + I , . . . ,  v8 . By (2.33) and (2.34), rues(at, bt)<= 6 and so 

U ~ U ~ - ~" (2.37) a t ~  p,/z(~) and b t~  p,/2(~) for  l = i i + l  . . . . .  u~ . 

Le t  o-o be the Lipschitz constant  of log[ i f [  on I \  U,~t2(�89 D e n o t e  by Lj the 

minimal interval conta ining points ai,+l, bt,+~ and fA (�89 Then  

(D 

sup [ q ?  -" - l ) ' ( z ) l  
log zEL| 

(D . 

inf Iq~ ~ - " - ' ) ' ( z ) l  
z E L j  

(2.38) 
= sup (loglf (f'(z ))l-loglf (f'(z ))l) 

z l , z 2 E L i  O~l~v~IJ - - i i - - I  

---< 5'. mesO" L,). 
< < (i) . 

0 = 1 = %  - - ~ - I  
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Since by (2.33) and (2.34) 

(2.39) 

then by (2.36), 

(2.40) 

and 

(2.41) dist(�89 f~Lj) > �89 

Therefore by Lemma 2.I, 

mes(aA,,, bA,') < 

t j , v ~ t  - -  I i ~ [ mesff ,  Lj) _-< 28 

(D 
for all 1 = 0  . . . .  ,vs  - i  t - 1 .  

Finally, from (2.33), (2.45) and (2.46) we get (2.32) with 

(2.47) Ks = exp{(cs + C,28-')(1 - 7~')-' rues O} 

that completes the proof of Lemma 2.4. 

The next result will be important in the proof of the Theorem. 

sup I q2+'-"-')'(z)l 
(2.46) log . ~ (r, mes(a ,  b~). 

inf I (f2§ "~' "+' "~E(ali+l,bij+l) 

(2.38) one can see that 

CD . 

(2.42) l < (- v~ -,, - tl (J) mes(f~Lj)= C96y3 for l = 0 . . . .  , us - it - 1 

where (79 > 0 and y3 > 1 depend only on p0. 

Hence the right hand side of (2.38) is bounded by o-oC98(1- y31) -~. Thus by 
(2.35), (2.36) and (2.20), 

6-1d. 1 (2.43) mes(a ~j+l, b~j+,)-< C,o lst(/(~), (a~,+l, b~,+0)mes(aA,, hA,) 

for some C3o > 0 depending only on po. 

Solving the equation 4Ax(1 - x) = z with respect to x for z close to h and taking 

into account that �89 ~ (a,,, b~j) because of (2.31) one obtains from (2.43), 

- I  ) �9 I (2.44) mes(a~, b~) -< C ,  6 mes(aA,, bAJ )dmt(~, (a,,, b~j )) 

for some C ,  > 0. 

Again, since ' ~ (a~, b~) it follows from here that 

sup I/ (z)l 
(2.45) ~%e,) <= (1 + C~28 -~ mes(aA,, bA,)) 

inf If~(z)l 

for some C~z > 0. 

Let ~r~ be the Lipschitz constant of log 1[~1 on I \  U~,(�89 then in the same way as in 
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L e m m a  2.5. Let x E I be a point, p > O and Q C I be an interval such that 

[~"Q is defined and (2.31) holds. In each connected component Z, i = 1 . . . . .  I of the 

intersection [~"Q f') Up (x ) take an arbitrary point y~, i = 1 . . . . .  I. Then there exists Z~ 

independent of n, Q, p and the points {y,} but depending on 8 in (2.31) such that 

(2.48) Z8 l + p - '  max [(f~)'(y,)[-' > P - '  [(f~)(Y,)l �9 
1~'_<_1 

If  n >-_ l log p P/~ and p is small enough then 

(2.49) 2 Z s > P  -' IffZ)'(y,)l-'. 

P r o o L  By (2.31) one can find an interval R 3 Q with 

(2.50) inf dist(z, ffA) = 8/2 and mes R = 6/2. 
z E R  

It follows from Lemma 2.4 that if F~ is a connected component of f ~ R ,  F_, is a 

connected component of f~"Q and F~ D F2 then 

(2.51) mes F2_< K~ mes 0<28_ ,K~  mes 0.  
mesF, mes R = 

Let 

n l  - I  d = p-~ max t([~)(Y~)I , 
I ~ _ i < l  

then each connected component F of [~"R satisfies mes F =< pd and so by (2.50) and 

(2.51), 

(2.52) mes(/~ 'O tq Ue~,+d~(x)) <_ K~ mes O. 
mes(/~"R tq Upo+2~(x)) 

Again using Lemma 2.4 one can see that 

(2.53) mes(/~"O N Upo.a)(x )) >= K ;  t mes O ~ [q:)'(Y,)l-' 
l ~ i < l  

where {y~} are the same as in (2.48). 
Since mesff~'R tq Upt,+2~(x))- < 2p(1 + 2d) then, by (2.52) and (2.53), 

2C,3K~(l + 2d)>=p -~ ~. [ f fT) ' (y , ) l  - '  

proving (2.48) with Z~ = 88- 'K].  
If n => I In p 13~2 and p is small enough then, by Lemma 2.2, it follows that d =< 1 

proving (2.49) and Lemma 2.5. 

Employing Lemma 2.1 instead of Lemma 2.2 one can prove the following results 

similar to Lemmas 2.4 and 2.5. 
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L e m m a  2 .6 .  Let J C I be an interval such that f~ maps J homeomorphically 

onto its image Q = f :J  and 

(2.54) min �9 1 i o~_~,-, dlst(_~, f J )  >= p, 

then 

(2.55) s~  [(f:)'(x)l 
<go 

!nf I(f:)'(x)[ 

where I(~ > 0 is independent of n and J. 

Proof .  From Lemma 2.1 it follows that 

(2.56) mes f ' J  ~ C (~/I/M") -'"-~' 

where G o > 0 depends only on p. 

If or, is the Lipschitz constant  of log lf]  I on I \  Up (�89 then, in the same way as in 
(2.38), one can see that 

(2.57) s uj]j I (f~)'(x)t n 

< ~ fT. = o- o rues 
inf I(f~)'(x)l 
x E J  

This together with (2.56) give (2.55) proving Lemma 2.6. 

L e m m a  2 .7 .  Let 8, p > O, n >- I ln p I -'/2, x E I \ Ua (�89 and 0 c I \ Us (~) be an 

interval. In each connected component Jj, j = l  . . . . .  l of the intersection 

f~nO N Up (x ) satisfying the condition 

(2.58) min " ' ' o~,_~,-, dlst(~'fAJJ) => 8 

take arbitrary points yj E J/, j = 1, . . . ,  I. Then 

(2.59) Z8 ----p-' ~ I(f:)'(YJ)[-' 
l~]<--I 

where Z~ depends only on 8, but independent of n, O, the points {yj} and p > 0 

provided p is small enough. 

The proof is the same as in L e m m a  2.5 by using L e m m a  2.1 and L e m m a  2.6 in 

place of Lemma 2.2 and L e m m a  2.4, respectively. 

3. L inear i zed  M a r k o v  c h a i n s  

The following result will be proved in the Appendix.  
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Proposition 3.1.  For arbitrary points xl . . . .  , x, E I let 01 . . . .  , O, be indepen- 

dent ra,ldom variables with distribution functions P{ Oi <= re} = f~_~ rx, (~ )d~. Then there 
exist C,3, a3 > 0 independent of xl . . . . .  x, and n such that for any non-zero numbers 
al . . . .  , a. the distribution function of the random variable 

(1~=~i~_" a~) -1': 1~_~i~_. a,(Oi - EO,) 

has the derivative, i.e. the probability density function, satisfying 

a l . . . . . a  n -a31~,l r ......... (71) <= Ct3e 

where EOi = f_= ~rx, (~)d~ is the expectation of 0~. 

For x E (0, 1), ~ ~ R '  = ( -  ~, oo) and a Borel set xtr C R 1 define 

(3.1) R:(~,qt)= e-l f rr~x (~q-f '*(x)~) d~l 
I ,  

where the functions r~ (~) were introduced at the beginning of w 

Consider the Markov chain ~'~(n) with the initial condition ~'~(0)= ~ and the 
transition probability R~(rt, xtr), i.e. 

(3.2) P{~'~(n + 1) E * [  ~':(n)} = R 7z~ (~:(n), * )  

where P{. [-} denotes the corresponding conditional probability. 

L e m m a  3.1.  Let {0~ (k) ~ RI,  k = 1 . . . .  } be mutually independent random 
variables with the distributions 

P{Ox (k) e qr} = ~ r::~ (-q)d'q. (3.3) 

Then one can write 

n - - k t  k n t  (3.4) ~ ' :(n)= e (fA )(fAx)O~(k)+(fA)(X)(; 
k = l  

in the sense that the left and right hand sides of (3.4) have the same multidimensional 
distributions and so probabilities of all events for both sides of (3.4) are the same. 

Proof. Denote  by ~ ( n )  the right hand side of (4.4), then 

e { L ( n ) E q t l ~ : ( n  - 1)}=e{eo(n)+f ' , ( fZ- lx)gZ(n - I C.(-'n - 1)} 

(3.5) = Rtz-+, (~'+(n'+ - 1) ,+),  

since O](n) and ~ ( n  - 1) are independent. But ~'~(n) and ~ ( n )  are both Markov 

chains ~ ( 0 ) =  ~ (0 )  and by (3.2) and (3.5) they have the same transition prob- 
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abilities. Therefore ~': and ~ have the same multidimensional distributions and the 
proof is completed. 

For s~ER ~ and Borel set ~ C  R ~ denote by R:(n,~:,~) the probability of the 
event {sr:(n)E q~} provided sr~(0)= ~. By the Chapman-Kolmogorov formula 

(3.6) R: (n , { ,  * ) =  ~ "'" I r:(sr 7/,)r~(~/,, ~h)""" rTz. (~/.-,, 7/.)d~/,... dr/. 

where 

(3.7) 

L e m m a  3 . 2 .  

r;(n, ~ )=  e-'rr~, ( ~ -  f~*(Y)n) . 

There exists Cj4 > 0 such that [or any x E (0, 1), ~ E R ~ and a 

Borel set xt, C {r/: 17/[ < 1} one has 

(3.8) R :(n, ~, ~)  =< C,,e  - 'B  ~'/2(x)mes ~ [ (f~)'(x)I -t 

provided ~ ' = . . ,  f ~ x ~  ~ for all k 0,. n - 1, where B,  (x ) is defined in (3.13) below. 

If, in addition, n >= (In e)2 and 

(3.9) d i s t~x ,  J', ) > $ 

then 

R ~(n, ~,~r <- C, ,e- '  n-"-" " �9 -. .  t x )mes~J( fT) ' ( x )J - '  exp{-  a3B:"'-(x)l  e - '~  + fix (n)l} 
(3.10) 

provided e > 0 is small enough with respect to 8, where fl ~"~ is defined by (3.11) below. 

Proof .  Define the random variables 

q~,(n) = ~ ( ( f~ ) ' ( x ) ) - ' (O . ( k ) -b ( f ] ( x ) ) ,  
k = l  

where b(y) = f_= s~rr (s~)ds ~ and 

(3.11) /3, (n) = 2 ((f~)'(x))-~b(f]x) �9 
k = l  

Then by (3.4), 

g :(n, ~, * )  = P{(f~)'(x) (eq~, (n) + eft, (n)  + ~) E xt t} 

(3.12) 

where 

(3.13) 

= P{B:"2(x)(~x (n) + ~x (n) + ~-'~) ~ e-'B;"2(x)(ff:)'(x))-'*} 

B. (x)= ~ ((/~)'(x)) -2. 
k = l  
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l r ~  - -  1 / 2 , '  \ 

By Proposition 3.1 the distribution of the random variable m,  tx)~o,(n)  has a 

density with an exponentially decreasing estimate and so by (3.12) one obtains 

(3.14) R : ( n , ~ , W ) < = C , 3 e - ' B - ~ " : ( x ) l ( [ 7 ) ' ( x ) l - ' m e s W e x p { - a 3 1 r l : ( x ) l }  

where 

(3.15) 71~.(x)=B~"2(x)  ,i~f _, l e -~sc+/3x(n) - r / I  

and (3.8) follows. 
Next assume that (3.9) is true and n >= (In e)2. Then for e small enough one can 

see from Lemma 2.2 that 

SU (3.16) ,~ _,, tt~,. _,, I n l ~  1. 

Since 

B.  (x ) >-_ (f ' ,(x )) -2 >= (4~t)-2 
(3.17) 

one obtains (3.10) from (3.14)-(3.17) proving Lemma 3.2. 

Now we shall prove a similar result under the conditions of Lemma 2.1 instead of 

Lemma 2.2. 

L e m m a  3.3.  ThereexistC~5, a 4 > O s u c h t h a t f o r a n y x ~ ( O ,  1 ) , ~ E R  ~ a n d a  

Borel set W C {77 : 1 7/[ -<- 1} one has 

(3.18) R : ( n , ~ , W ) < = f 2 z e - ' m e s q ~ l ( f T ) ' ( x ) U '  e x p { - a , e - ' t ~ l }  

provided n >- (In e)2, e > 0 is small  enough and 

(3.19) min dist(f,kx, '~) =>'~p,, 
( l ~ k - - < : n -  I 

I �9 ! where p0 = a dlst(~, ff~ ). I f  �9 C {'1 : [ rl I <-- e } then (3.18) is true for any n >- 1. 

P r o o f .  By Lemma 2.1 

I / M ~  - k  (3.20) ) foraU k = 0  . . . . .  n - I  

with some C~6 > 0. Thus (3.16) and (3.27) follow and the proof is the same as in 

Lemma 3.2 since in our circumstances C,~ _-< B. (x)-< C,7 for C,7 > 0 independent 

of n and x. 
Since we have identified the points 0 and 1, then the right and left hand side 

derivatives of f, at 0 need not coincide. For  this reason we shall construct another  

Markov chain which will describe the behaviour of the initial process x~ when it 

stays near zero. 

For ~ E R~ and a Borel set ~ C  R~ define 
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(3.21) R;(~' ~)= e-~ / r~ (~? -4A l~I) 
qt 

where 

(3.22) 4 A = f ~ ( x ) > 2 ,  i . e .A> �89  

< !  since for A = 2 the transformation f, maps [0, �89 ~ [0, A ] homeomorphical ly  and so it 

has a stable periodic orbit that contradicts our conditions. 
It is easy to see in the same way as in L e m m a  3.1 that  R0(~ r ~ )  is the transition 

probability function of the Markov chain ff~, constructed inductively in the following 

way: ~'; = ~, 

(3.23) ~'~ = 4A I ~'~-, I + e0., 

where {Ok E R 1, k = 1 . . . .  } are independent  random variables with the distribution 

(3.24) P{Ok ~ q2"} = f ro(rl)drl. 

Let R;(n, ~,~) be the probability of the event {~r E qt} provided ~',,= s r By the 

Chapman-Kolmogorov formula 

(3.25) 

where 

(3.26) 

R;(n ' { ' * )=1  " " I  r';(~"q])r;(rl"'q2)'"r';(rl"-"rl")d'q'"'d'o" 

r;(rt' ~') = e - '  r~ (~" - 4A [ r/l) " e 

L e m m a  3.4.  For any n, e > O and a Borel set ~I, 

(3.27) R~;(n, ~, ~) <= Coe-~(2A )-~--o mes 

where C 0 > 0  is the same as in (1.1). 

P r o o f .  Put q~. = e-'(4A)-"~'~,, then 

(3.28) q~.=l~o,_, l+(4A)-"0,  and q~o=e- '~.  

Notice that if 71 is a random variable with some distribution having a density p~ (x) 

satisfying p, (x)_-< C' for all x ~ R ~ and some constant  C7 > 0 then the random 

variable I rtl has the distribution with a density pf~r(x) satisfying pf<(x)=<2C ". 

Indeed, 

P{ ln  I ~ r}_-< P{r  t E r } +  P i n  (E - r }  
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and since mes F = m e s ( -  F) then 

(3.29) Pr,l(x) = P, (x) + p, ( - x) =< 2(~. 

Consider ~o~ = ~-'1~1+ (4x)-~0,. By (1.1) and (3.24) the distribution of ~ has the 
density 

(3.30) p~,(x) = 4Aro(4A (x - e-~ I ~: I)) =< 4)tCo. 

Since q~k-1 and Ok are independent, then by the argument above and (4.41), if the 

density p~ , (x )=  < C tk-~) for all x, then 

(3.31) p,~ (x) = f f  P{(4A)-k0k ~ dy}pl .... i(x - y)-------2C (k-') 

for all k = 2 . . . .  , n. From (3.30) and (3.31) it follows that 

p~.(x)<- A2"+'Co. (3.32) 

Therefore 

(3.33) 

proving (3.27). 

(3.34) 

P r o o f .  

process 

(3.35) 

R;(n, ~,~) = P{~r,~ (5 ~ }  = P{~o; ~ e - ' ( 4 A ) - " ~ }  

= ~ p,~:(x)dx <= Coe-'(2X)-("- ')mes~ 
J 

r - I ( 4 A ) - " ~  P - 

We shall need also 

L e m m a  3.5.  For any n, m, e >O and a Borel set ~ ,  

R ~ ( n , m , V ) ~  f Ro(n,~,drl)Rx(m, Th~) 

-<- f o e - '  I ( fT) ' (x ) l - ' (2a) - ("  -') mes  ~.  

It is easy to see that R ~(n, m, W) is the probability P{K,.,. E ~} for the 

e ~ ,  m t 
K , . =  e ,.., f f T - k ) ' f f ~ x ) O x ( k ) + ( f ~ ) ( x ) ; . ,  

k = l  

where {0x (k)} are the same as in Lemma 3.1 and these random variables are chosen 

to be independent of ~ defined by (3.23). 

Let 

fix (m) = ~ ((f~)'(x))-'&, (k). 
k = l  



212 A. KATOK AND Y. KIFER 

Since wx(m) and ~o, in (3.41) are independent then, by (3.45), 

/~ :(n, m , ~ )  = P{K~.,, E xI t} 

(3.36) = P{(4A )-"rh (m)  + q~, E e-l((f'~)'(x))-~(4a )-" ~} 

=< Co~ -ll(fT)'(x)t-1(2A )-(,-1)mes 

proving Lemma 3.5. 

4. P r o o f  of  the  T h e o r e m  

If F C I is a Borel set define 

= / d,st(xk,~) > and x : E F /  J~(p," n ,x ,F)  P, rain " " ' P 
I 0~k--~n-1 1 

(4.1) 

=.!,~,, ) " ' "  i,u.(,,ffq~*'(yl)q~*"(Y2)"'qT*"-'(Y")dY''"dY"1 , .  

where we have used the Chapman-Kolmogorov formula, q~(z) is defined in w and 

P~ {. } denotes the probability of the event in brackets provided Xo = x. 

The main step in the proof of the Theorem is the following. 

L e m m a  4.1 .  There exists 3/0 > 0 such that for any x E [e ~:~", 1 - e":~"] and 

an interval Q c I satisfying (2.31) with some 6 > 0 one has 

(4.2) J~(e v, n, x, Q ) 6  D, mes Q 

provided (In e)4 _> n _-> (In e )2, Y __< y0 and e is small enough, where D, > 0 depends 

only on 8 and a2. 

P r o o f .  For any Borei set F C I and any numbers p, , / >  0 define 

J~(o, 7, n, x, F)  

(4.3) P~{xk+, E U,,([,xk), " " ' = " " d ls t (x~,~)>p for all k = 0  . . . .  , n - 1  a n d x , E F } .  

Then by the Chapman-Koimogorov formula 

f f f f 
I I . -  U I Uvs(fax)f3(l\Up(2)) Un([,~yl)n(l\Op(2)) U~l([,~y 2)O(1\ p(2)) U,~(/ayn-0OF 

(4.4) 
x q;,jy,)q;,,,(y2)"" q ; , , . _ , ( y . ) d y l  �9 �9 �9 d y . .  

By (1.1), (1.8), (1.9) and (1.11) it is clear that 

t ]~(p, n, x, r ) -  A(t,, n, n, x, r)l 
(4.5) ,,2.. 2m sFox,(  oin,o o 2 , ) .  
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Le t  

(4.6) e =< mes  Q 

where  Q is an interval .  T h e n  one  can find points  vl . . . . .  vk, such tha t  

1 
(4.7) Q C I,.) U~(v,) and m e s Q = > ~  ~ mesU~(v , )=ek~.  

If e > mes Q then  ins tead of U. (v,) we shall t ake  Q itself. Clear ly  

(4.8) J~(p, rhn, x , Q )  <- ~,  J~(p,~l,n,x, U~(v,)). 

T a k e  

(4.9) r / = e  l-a and p = 2 C 6 e  ~ 

where  (76 > 0 is the s a m e  as in (2.20) and /3 > 0 will be chosen small  enough.  

Accord ing  to (4.4) the in tegra t ion in J~(2C~e~,e~-~,n,x, U,(v~)) is over  e ~-~- 

pseudo-orb i t s  to = (x, y~ . . . . .  y , )  s tart ing at x, ending in U~ (v~) and not  approach ing  

�89 (except ,  maybe ,  for  y~)c loser  than 2C~e ~. Then  by L e m m a  2.3 one  can find z "  E I 

such that  

(4.10) dist(yk,f~z')<=C6e ~-2~, y 0 = x ,  k = 0  . . . . .  n - 1  

and  therefore  

(4.11) dist(f~z',�89 ~ -- C6e l-2tJ ~ C6e ~ for  all k = 0  . . . . .  n 

p rov ided  /3 < .~. 

Cons ider  all connec ted  c o m p o n e n t s  Z~j of  the intersect ion Uc~,,-'-~(x)N 
f2~U~ (v,) conta ining a point  zi i ~ Z~ i such tha t  

(4.12) dist(f~z~j, �89 > e 2~ for  all k = 0 . . . . .  n - 1. 

It  follows f rom (1.15) that  if z ~" E Uc,,' ~(x), fTz"  E U,.c~,'-'-~(v,) and (4.11) holds 

then there  exists z~ i cons t ruc ted  above  sat isfying (4.12) and 

(4.13) dist0r~z,j, f~z"  ) _--- �89 t-3a for  all k = 0 . . . . .  n 

p rov ided  e > 0 is small enough.  H e n c e  by (4.10) and the a rgumen t  p reced ing  it one  

concludes  that  for  any  e~ -pseudo-o rb i t  to = (x, y~ . . . . .  y~) s tar t ing at  x, ending in 

U~ (v~), with yo = x, y, . . . . .  y~_, staying outs ide  of  U2r189 there  exists z,, intro-  

duced  above  such that  

(4.14) 

T h e r e f o r e  

(4.15) 

dist([~zij, yk) =< e'-3~ for  all k = 0 . . . . .  n. 

s ; ( 2 r  ~, e '-~, n, x, u ,  (o,)) _-< ~ " '"  ,-3~ J3te ,n,x;z, j ,  U,(v,)) 
I 
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where  

J~(8, n, x ; z, F) = Px {x ~ E U~ (f~z) for  all k = 0 . . . . .  n - 1 and x ~ 67. F N U~ (f~z)} 

(4.16) 

s ! s . . . .  q~,x(y~)q~,yl(Y2) �9 �9 �9 q;,yn_~(y,)dyl'" dy, .  
us(fxz) u~(f"-lz) u~(f'~z)nr 

Let  /3 > 0 be  so small that  

(4.17) 1 - 4 / 3 > o t 2  and 13< 

and suppose  

(4.18) x ~ [e ~:+~, 1 - e~:#] .  

If yk E U,~-3"(f~z~s) and yk+~ E U~--'~(f~zq) for  k = 0, 1 . . . . .  n - 1  then  one can 

see f rom (4.12), (4.14), (4.17) and (4.18) that  d i s t ( y k , 0 ) >  e 5~ for  all k = 0 . . . . .  n. 

The re fo re  

(4.19) If ,  Y~ - y~ . , l  < *'-~ 

provided  e is small  enough  and fx has b o u n d e d  second der iva t ives  on any interval  

(yk,f~zq). T h e n  by (4.14), 

(4.20) I yk*l -- f~Yk --(Yk+l--f~*~Z~j)+f'~(f~z~S)(y~ -- f~z~i) l<=Cl: 2-6~ 

for some C~8 > 0. 

Since (4.19) is t rue  o n e  can e m p l o y  (1.8) to obta in  

(4.21) qr~,~(Yk§ (1 + e -)e rr~y ~ . 

Set rl~ = y , -  f~z~i. Then  by (4.20) and  A s s u m p t i o n  A(iii) it fol lows that  

(4 .22 )  Ir/,yk(Y'''-EfAYk)--rf~*'z,,(Tlk*'--f~E(t:Zq)~k)1~-E~-7" 
provided e is small enough and 

(4.23) either e-~(rlk+t , k V+§ + - f~ ( f~z ' s ) r l )E  1, z,, or e-~(ys,+,--f, yk)fig. Vl, y,. 

If (4.23) is not  satisfied then,  by (4.20) and A s s u m p t i o n  A(iv),  

(4.24) yk+, E c~+l - -{~ :  )7 --fAyk E 0V~y~(e~-7~)} 

provided e is small  enough  and so one  can drop  the restr ic t ion (4.23) by modi fy ing  

(4.22) in the fol lowing way: 

rt~y~(e-~(yk+t - f~y~ )) --< r:~+,~,~ (e-~(rlk+~ -- f'~(f~z~)'O~ ) + e ~-7~ 

(4.25) + X,i+, (Y, +,)r:,,, ( e - ' (y ,+ l  - f~y~)) 
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where,  as usual, Xr(Y) = 1 if y ~ F and Xr(Y) = 0 otherwise. 

From Assumpt ion A(iv) it follows that  

/ .  

(4.26) | -l -x r:~,, (E (y~+,-  f~yk ))dyk+~ < 2C2e ~-7~ 
J 

O~+tt3U. l-31~(f~+lzq) 

provided yk E U~,-~(f~+'z) and e is small enough�9 

Now from (3.6)-(3.8), (3.10), (4.16), (4.25), (4.26) substituting ~ = x -  z~j and 

T/k+, = yk+t--f~+'Z~ one obtains 

S e n, x ; z,j, U ,  ( v , ) )  

(4.27~ C~ge-~B:~n(zij)l (fT,)'(z~s)l-~(e ~-~"~ + exp{ - aB~ '2 ( z~ )e - ' l~  +/3~,, (n)l}) 

(cf. the formula (5.35) of [5]) for some C~9 > 0. 

Next we shall prove that  for any z~,i ,, z ~ i ~  Lrc,,/-~,(x) satisfying (4.12) one has 

(4.28) C - ' < B " ( ~ ' # ' ) < C 2 o  and 

with Go > 0 independent  of i,, ./, i2, ./2. 

Moreover  we shall show that  there exists an integer N depending on ~ such that  

C~,' < I (f~)'(~,i,)[ < (1 + Cn e ' - '2")  for all k = 1, N = I . . . .  ' (4.29) 

and 

(4.30) [ ( f / ) t ( Z i j ) [ - I  ~< C21/~  1-6~1 for all l = N + 1 . . . .  

where C2, > 0 is independent  of i,, i2, jl, .i2, i, j. 

Indeed,  let 

�9 k k ~-- ~ 1--10~ } (4.31) N = max{k : dlst~Azi,j,, [AZi~) < �9 

Then from (4.12) and L e m m a  2.2 one can see that  (4.29) holds with some C2~ > 0. 

Since dist(zi,j,, zi.j.) <= 2C6e ,-z, and dist(fT+Xz i,~,, [7+ 'z  i~j2) => e ,-,o~, then by (4.29) 

(4.32) [ (f~+')'(z @)1 = > C -122 e -s~ 

with C22 > 0 independent  of e, i, and jl. Using again (4.12) and L e m m a  2.2 one can 
see from here that 

(4.33) [ ~+E) ' (Z ~,j,)[-' =< C23e i-6~ 

for some C23 > 0 and all k = 1 . . . . .  

This proves (4.29)-(4.30) and so (4.28) is also true since/3 < ~s, supy [f[(y)[ < 4A, 

n =<(lne) 4 and b (y )  in the definition (3.11) of /3x(n) is bounded  and Lipshitz 

cont inuous by the condit ions (i)-(iv) of w 
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Hence setting B. = Bn (z,,j,) and/3 (n) =/3 z,,j, (n) we can rewrite (4.27) as follows: 

J~(e 1-3~, n, x ; zo, U~ (v,)) 
(4.34) 

-'B?"/2I ( e'-''~ - e <= C24e (fT)'(zi/)l -I + e x p  { a4n:  1/2 J x ~ + / 3 ( n )  }) 

for some (:?24, or4 > 0. 
Let 

~;k = zo: k = - ~  + /3(n) < k + l  . 

Then, by Lemma 2.5, 

(4.35) B:"2e -' ~ I(f~)'(z,j)[-' =< 2Z~. 
z~-jE~' k 

Since J(f~)'(z)] =< (4A) l for any l and z then, by (4.13), one has B~ ~/2 =< A -1/2. 
Besides, from (2.12) and Lemma 2.2 it follows easily that I/3(n)1--< const e -2~. 

But we consider zq satisfying J x - zq ] -< C6e'-2~, and so the sets ~k should be 

taken into account only when 0 =< k =< e-38 provided e is small enough. Here we 
have used Ix - z q J  instead of dist(x, zq) because this is the same in view of (4.17), 

(4.18) and Ix - zoJ <-_ C6 e l -2D,  provided e is small enough. 

Now from (4.15), (4.17), (4.34) and (4.35) one obtains 

(4.36) J~(2C~e~,e'-~,n,x, U~(v~))<=2C2,Zse ~ (e '-''~ + e ~)<= C2~Z~e 
(}=<k =<e -3~ 

provided e is small enough, where C2.~ > 0 is independent of e, 8, i. 
Finally, by (4.7), (4.8) and (4.17) 

(4.37) J~_(2C, e ~, e '-~, n, x, Q) <-_ C25Z~ mes Q. 

Since n -<_ (In e)  4 and (4.17) holds, then (4.2) follows from (4.5) and (4.37) with 

yo =/3 and D~ = C2.~Z~ proving Lemma 4.1. 

Since the derivative of f~ is not continuous at 0 we have to treat this point 

separately. 

L e m m a  4.2.  There exists C~_~ > O such that if (in e )" >= n >- (In e )~- and e > O is 

small enough, then for any ~ <= ~ and x E U~ (0) one has 

(4.38) J ,(& ~ n, x) =- P / max dlst(x k , "  ~ 0) <= t}/<= C_,6(2A )-,,-0, r )212). 
1 

P r o o f .  By the Chapman-Kolmogorov formula 

J:(&n,x)= Jf " "  f q;,.(y,)q;,,,(y2)'"q;,,._,(y.)dy,"'dy. 
Ua(O) t ;Mo)  

(4.39) 
= J~(& n , x ) +  R~(& n ,x)  
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where  

(4.47) {i-' r  y + l  

y - 1  

i f l z - y l < :  
iflz y + l l - -  < 
if I z - y - l l ~ e %  

o x, f 

(4.40) 
x q~dY3)q;,y,(yz)'"q~y. , ( y , ) d y , - . .  d r , ,  

/3 > 0  satisfies (4.17) and R'(& n,x) is def ined by (4.39) and (4.40). 

By (1.1), (1.8), (1.9) and (1.11), in the same way as in (4.5), one  has 

(4.41) R"  (~, n, X) ~ G7n  exp( -- ase  -#) 

for  some (727, as > 0 independen t  of e and n. 

The  integrat ion in (4.40) is over  ~ ' -O-pseudo-orbi ts  to = (x, yt . . . . .  yn) starting at 

x and staying in the 8 -ne ighbourhood  of the point  O. Since 8 < "  then dlst(yi," ~)1 => 38 

and by L e m m a  2.3 one  concludes that there  exists a point  z ~ such that  

(4.42) dist(f~z~,yi)<=C28e ~-~, i = 0 , 1  . . . . .  n, y o = x  

where  C28 > 0 is i ndependen t  of x, yl . . . . .  y, and e. Then  

(4.43) f~z" E Us+c2,,'-#(O) for  all i = 0, 1 . . . . .  n. 

I If e is small enough  then 6 +  C~e '-~ <q,  and since ] / ' ( x ) l > " '  = ~ - > 1  for any 

x E Urn(0) when A ---�89 one  obtains f rom (4.43) that 

(4.44) f~z ~ ~ U, (0) for  all i =< n - �88 e)2 provided e is small enough.  

Hence  by (4.39), (4.40), (4.42) and (4.44), 

(4.45) J](8, n, x) =< J~(e ,-2#, n - [�88 e) 2] - I, x) 

and either x E U~,-2,(0) or J](8, n, x) = 0, where e is supposed to be small enough 
and [. ] denotes the integral part. 

Now (1.8), (1.9), (4.17) and (4.39) yield, for x E U.,-~,(0) and any k, 

f f e-'r~ (~xe-~J) e-'rt, y, (tr(faYe"Y2)) 
U. I-2#(0) U~l z#(O) 

(4.46) 

� 9  E r l A y ~ _  I 
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It is easy to see that 

(4.48) ] ,r (fy,, y,+~)- tr(0, y~+~) + 4A ] o'(0, y,)l 1_- < C29e 2-'~ 

since y, E U,,-~,(0) for all i = 0, 1 . . . . .  n. 

Then in the same way as in (4.25) one has 

/ "/~(f*~ ' Y'+'))\ < ro(e-'(n,+,- 4A In, I))+ el-5~ 
r fAy~ 

(4.49) + X~,.,(y,+,)r/,y,(~ ) 
where */i = o-(0, y~) and 

(4.50) g : + l  ------ {~: tr(f,y,, " + ,-5a y )~  avr,,,(e )}. 

Next, similarly to (4.27), from Assumption A(iv), (3.25)-(3.27) and (4.46)-(4.50) it 
follows that 

(4.51) J:(e ,-2,, k, x)<= C30(1 + e ~)"e-'(2A )-" 

for some C3o > 0 independent of e, k and x. 

Finally (4.39)-(4.41) together with (4.45) and (4.51) yield (4.38) for e small 
enough, proving Lemma 4.2. 

From Lemma 4.2 it follows that we can drop the restriction x E'[e"2+~~ 1 - e'=+v~ 

in Lemma 4.1. 

Corollary 4.1.  For any x E I and an interval Q c I satisfying (2.31) with 

some 8 > 0 one has 

(4.52) J~(e ~, n, x, Q ) <= 2D~ mes O 

provided (In e)4 => n => 2(In e)2 + 1, ~/_-< 1'o and e is small enough, where D6 is the 

same as in (4.2). 

Since for some C3~ > 0 independent of e, y and z 

q~(z)<=C3~e -~ for all y, z and e > 0 ,  

Proof. 

(4.53) 

then 

(4.54) 

Define 

(4.55) 

J,(e , k , x , Q ) < C 3 , e - ~ m e s Q  for any k. 

~ = min{k: x : ~  U~-,(O)}. 

For xf~ U~-2(0) the inequality (4.52) is proved in Lemma 4.1. So assume that 

x E U,*2(0). Since ~', is the Markov time, then by the strong Markov property of the 

process x~, it follows from (4.2), (4.38) and (4.54) that 
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" ~ = EPx max dlst(x~,O)<-_e~2, r ~ = k  J~(e , n - k ,  xk, O)  Jl(e , n , x , Q )  1 n t 0 - ~ i ~ k - 1  

<= ~. P,{% = k } J ~ ( e ~ , n - k , x [ , Q )  
l~--k --~_--~n e)2 

(4.56) 
+ C 3 , e - l m e s O  ~ .  P ~ /  max dist(xT,0)=<e ~ 

l+(In e) --<_k~(In e) [ 0----<i--~k-I 

----< D8 mes Q + C26C3~e-m(ln e)S(2A)-~ mes Q, 

since (In e)4 ___ n --> 2(In e)2 + 1, and so when k _-< (In e)2 then n - k _- (In e)2 + 1, 

where E denotes the expectation. Recall that A > �89 and so (4.52) follows from 

(4.56) provided e is small enough, proving Corollary 4.1. 

Next we shall take care of paths of the Markov chain x[ which sometimes 

approach the point �89 
Define 

P~,.,~....,,~(v, n, x, O) 

(4.57) =-P~{x~.EU,,(�89 for j = i l ,  i2 . . . .  ,ik <n,  x ~ . U : ( � 8 9  if j ~ i ,  

for some l and x ; ~  Q}. 

There exists "/1, C32 > 0 such that/or any x E I and an interval L e m m a  4.3 .  

O C I one has 

(4.58) PT,,...,,k(Y, n, x, Q )  ~ C 3 2  E ( k - l ) V - 2  m e s  O 

provided 3, <- 3'~, n <-_ (In e)4 and e > 0 is small enough. 

P r o o f .  Let gT,.....,k(n,x, y) be the density of PT,.....~(n,x, 0 ) ,  i.e. 

P,~....,,k(n, x, Q) = [ gL...,,,(n, x, y)dy, (4.59) 

O 

then by the Chapman-Kolmogorov formula 

g,,,....,,(l,+~,x, y)= ~ g h.....i,-, (11, ,z)g,~,(i,+, (4,60) e �9 ~ " X - -  il, z, y )dz 
U.V(l/2) 

for any l = 1 . . . . .  k where we put ik§ -- n. 

Denote also 

g~(m, y,z ) -  f 
l\u,',O12) 

(4.61) 

f . . . .  z d  "'" qi~y(YOg1~,,(Y2)"" qr~,.-,(Y,,,-,)q/~y.-,( ) Y,"" dy,,,_,, 
I\U.~(II2) 
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then by (1.1), (1.8), (1.9) and (1.11), 

(4.62) g~(i , ,  x, z )  <- 2Coe  -~ - A ~  

provided  e > 0 is small enough.  

Suppose  that  

(4.63) ~ i g,,.....,,-,( ~,x,z)<=AH 

Then  by (4.60), 

for  a n y z E  ~ ~zs. 

r 
e �9 ~ e I g i l , . . . . , , ( h + l , x , y ) = A H  " " " g,,(lt+~ - il, z, y )dz 

3 
U~V(l/2) 

(4.64) =a~-i f fq;~z(v)g;(i,§ 
U#~'(l/2) I 

=ALl o~,. f f q;~z(v)g;(i~§ 
-- U( I+ I ) ( I I2 ) \U( I ) ( l l2 )  I 

where U~189 = U:+(�89 for  j = 1 . . . . .  m, U<~189 = 0 ,  /3.+, = 7, 

(4.65) 1 > 2/3/+, >/3j >/3,+1 ---> "y for all j = 1 . . . . .  m and 2/3z > 1 - / 3 , .  

If z E U~189 then f,z E U,a:,j(f~ (�89 and so by (1.1), (1.8), (1.9) and (1.11) 

(4.66) q~,~(v)<= C ~ , e x p ( - a 6 e  2e : ' )  if z E U(J)(�89 and v ~  Us,:~j(/a(�89 

for some C,,,,, a6 > 0. Since 2/3 i < 1 one  obtains from here  that  

I f ~  qr~.( )g,,( t+ l -  it - 1,v, y)dzdv 
J 

U(D(,12)\U i - I ) ( 1 /2 )  I 

(4.67) 

~- f, f q;,*(P)g';(i'+'-i'-1,v,y)dzdv+exp(-a'e2"-') 
(') " - I )  U ! ( I /2 )~U ! (1/2) Us~t~2#j(]k(,12)) 

for  some a7 > 0 provided e is small enough.  

It is easy to see that 

I (4.68) q r~( v )dz <= 2Coe 0'-' 
U 0 /2) 

where Co is the same as in (1.1) and 

(4.69) f q~,z(v)dz= f q:(v) Z [[~(z)[-tdw<=Cu e-', 
(1+1) ( ') Z E [  -klw (J(J+D(I/2)\U(J)(I/2) J r ; (u  (,/2)~L/ e ( I /2) )  
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for  some C34 > 0 since 

(4.70) f q~(v)dw ~ 1 + 2 e ' h  

I 

Indeed,  by Assumpt ion  A(i)--(ii), (1.8) and (1.11), if & = �89  ~2) then 

f q:(v)dw<= f q : ( v ) d w + e x p ( - & e - o )  
I U~l-t3(v) 

,4.71, , 
1 

- (1 + 2e ~:) 

provided 0 < /3  < �89 and e is small enough.  

Now collecting (4.64), (4.67)--(4.69) one  obtains 

f 
g,~,.....~,(it+~, X, y )  =< 2A ~_t Coe #'-~ J g;(i~+t - i~ - 1, v, y)dv 

USA ~ 2.s t (.t'A ( I / 2  )) 

(4.72) 

+a~-,C4, ~ ~,-#'-' f g~(i,+l--it--l,~,y)dv. 
2_j~m 

O~,~'-#j([~ ( I / 2 ) )  

Next,  in the same way as in (4.5) it follows f rom (1.1), (1.8), (1.9) and (1.11) that  

(4.73) g~(it+,- i, - 1, v, y)_-< g~(it+~- it - 1, v, y ) +  e -~ ' "  

for  some a ~ > 0  provided  e is small enough,  where  i~+,- i~ ~ n _-< (In e )  ~, 

g,;(m, v, y) 

(4.74) = f f 
UFI-v([~v)N(I\UtV(I/2)) Uel-v([,~ym-On(l\U~.V(l/2)) U~.l-~(~ym-2)Auel'-v(~ y)n(l\U~V(I/2)) 

x q~,,(zt)q~,~,(z2).., qh .... (zm_,)q~, .... ( y ) d z , . . .  dz,~_~. 

The  integrat ion in (4.74) is over  e ' - ' - p seudo-orb i t s  to = (v, zt . . . . .  zm-t, y )  starting 

at v, ending at y and not  approaching �89 (except for  the last point  y)  closer than e ' .  

Then  by L e m m a  2.3 one  can find z ~ E I such that 

(4.75) d is t (z ,  [~z ~') <-- e t-3,, i = 0 . . . . .  m ; Zo = v, z,. = y 

provided e is small enough.  

Take  one  point  z 'j in each connec ted  c o m p o n e n t  Z ij of  the intersect ion 

f , (" ' -"-"  U r- ' ,(y ) n U~2,,(f~ (�89 
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where y E U~, (�89 then it follows from above that 

f 
USX,2t3i(fX (1/2)) 

(4.76) 

ga(i'+t-i '-l 'v'y)dv<=~ f h~(z";i '+l-il-l 'v 'y)dv 
Uel-47(Z I/) 

-<2e l -4"~  sup h'(z~i;i,+,-i,-1, v,y) 
i u~UtI-&2"(Z t/) 

provided e is small enough where 

h~(z,m,v,w) ~- f "'" f 
u~-3v(f~z) U~J-3v(fTz) 

(4.77) 

r e ~ W qao(Y~)qa~,(Y2)" " qa~.-,( ) d y l ' "  dym-~. 

First, suppose that A < 1, and so if e is small enough then 

(4.78) U6~,-'~J+E'-',(f~ (�89 C [e ~, 1 - e ~ ]. 

Using (4.21), (4.25) and (4.26) in the same way as in (4.27) and taking into account 

that (3.8) divided by rues �9 is the inequality for densities, one concludes from (4.77) 

that 

(4.79) sup h~(z~;i,+l-i,-1, v,y)<C36e-~J(f~+l-"-')'(z~ 
E U e  I-4"g(Z i l) 

for some C36 > 0. 
Since z ij E U6~,2~j(fA (�89 and f~+'-"-lz~J E U,,.,,-,,(�89 then using Lemma 2.2 one 

can see that 

(4.80) [ (f2§ ,i)[-1 ~ C37e 2a, 

for some C,7 > 0 independent of e, i and j. 

Hence by Lemma 2.5 it follows that 

(4.81) ~ [ (f~+'-"-l)'(z")1-1 <= C38e 2a'. 

Now by (4.72)-(4.74), (4.76), (4.79) and (4.81) it follows that 

(4.82) g~,...i~(il+',x,Y)<=2C36C3sCoAT-le-4r( Be3&-1+ E EZOFO~-t) <-A~-15~' 
2~- j~m 

provided e is small enough and y is chosen to satisfy 

(4.83) 0 < 5y < min(3~l - 1, 2~j - ~j-,) 

which is possible since by (4.65) the right hand side of (4.83) is positive. Thus by 

(4.62), (4.63) and (4.82), 



RANDOM PERTURBATIONS OF TRANSFORMATIONS 223 

(4.84) 

and so 

" X g,,.....,,_,(tk, , z) <= 2Coe-~e (k-')~ for  any z E U~, (�89 

f 
g,,.....,~(n,x,y) <- g,,.....,~_,(k,X,Z)g,~(n--ik, z , y )dz  

.J 
U e ' / ( l / 2 )  

(4.85) 
_ <_ (2C0)2 - 2  (k-,)~. 

this together  with (4.59) proves (4.58) under  the condi t ion )t < 1. 

If )t = 1 then f~ (�89 = 1 and we have to take care about  the endpoints .  Let  

~-'~ = min{l: f~z~J~ U,~,,(f~ (�89 if j > 1 

and 

" = min{/: f [ z "  ~. ~_ u,~(f~ (�89 
h (z , ~t+,- i~ - 1, v, y)  defined by (4.77) we shall Considering the integral " 0"  

est imate q;~y,(y,+~) for  l = 0 , . . . , ~ ' " - 1  by means  of (1.9) and (4.49), and for  

l ~J = "r . . . . .  it+, - it - 2 by means  of (1.8) and (4.25). Now employing L e m m a  3.5 one  

can see that 

i l+  I - - i l - - ' r  Jl - - '  t "rl! ij --1 
(4.86) h ' ( z q ; i , + , - i , - 1 ,  v,y)<=C39e-'(2A)-'"l(fx )(f~ z )1 

for  some C39 > 0. 

Since f~"z q E U6~,,~, if j > t ,  f ',"z '~ ~ U6A,~,~ and f~*'-"-~z q E U, ,+ , ,  -',(�89 then 

for  some C4o > 0 

i l+l- - i l  -'1"11-1 f "r ij i j  - - I  
(4.87) [(fA ) ( f A z  )1 <C4oe 2~' i f j > l ,  

and if j = 1 then the right hand side of (4.87) should be replaced by C4oe 2~. By 

L e m m a  2.5 one can see f rom above  that  for  some C4, > 0 

(4.88) ~ I(f~+'-"-k-')'(f~z'~)l-'~C4,~ ~" if j >  1, 
i ,rU = k  

and if j = 1 then we replace C4,e 2~' by C4,e 2a. 

Finally, by (4.72)-(4.74), (4.76), (4.86) and  (4.88) it follows that  

(4.89) g,,.....i,(ll+,,x,y)<-C42e-4"AT-, 3e"'-1+2~ ~'~ e 2"j- ' - '  <--Al-,e 
2 ~ _ j ~ r a  

provided ~ is small enough  and T is chosen to satisfy 

(4.90) 0 < 5T < min(/3, + 2132 - 1, 2/3j - /3j_,)  

which is possible since, by (4.65), the right hand  side of-(4.90) is positive. 

Now the conclusion of the proof  of L e m m a  4.3 is obta ined  by (4.84) and (4.85) in 

the same way as above  for  the case A < 1. 
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Next we shall go back to the proof of the Theorem itself. Take an arbitrary 

interval O c I satisfying (2.31) with some 8 > 0. Then by (4.52) and (4.58), 

1 n i l < ' " < i k  

(4.91) 
.o 

=<2D~mesQ+k~__ 1 2 Pr,... ,~('y,n,x,Q)+e ~ e 'k -~~  
= i l < ' * ' < i k  k = m o + l  

where m0 = integral part of (3/3,+2),  (~)= n ! ( n -  k)!/k!  and we take 

(4.92) n = n (e) = integral part of (In e) ' .  

If k =< mo and n is given by (4.92) then one of the differences i~+~ - i~, l = 0 . . . . .  k 

with io = 0 and ik+~ = n will be at least (m0+ 1)-~(ln e)  4 and so it will be bigger than 

2 ( lne )2+ l .  Hence by Corollary 4.1, if it§ for some l =  

0 . . . . .  k - 1 then 

(4.93) PT,.....,k(% n, x, Q)  ~ sup J~(e ~', i,.~ - i, - 1, z, U,, (~)) =< C,~e �9 
z 

for s o m e  C 4 3  > 0. On the other hand, if n - i~ => 2(In e)2 + 2 then we apply (4.52) to 
obtain 

(4.94) P,~....,k('Y, n, x, O ) <= 2P~,.....,k(% n - N~, x, I)Ds mes Q 

where N, = integral part of (2(ln e)2+ 2). 

Since 

~ P,%..,~(Y,n-N,,x,I)<=I 
k i l < ' " < i k  

one derives from (4.91)--(4.94) that 

(4.95) 

.o ( : )  
Px{x~EO}<=D~mesO+C43e~k~j~ + e m e s O  

_---5D~ mes Q + e ~/2 

provided e is small enough. 

By the Chapman-Kolmogorov formula 

e. x: o1= f ... f e'(x, dy,)e'(y,,ay2).., e'(y._,, dy._,)e'(y._,, O) 
l I 

where P" (z, F) is defined by (0.3). This together with (0.2) and (4.95) yield 

(4.96) # ' ( Q ) - <  5D~ rues Q + e ~/~ 



RANDOM PERTURBATIONS OF TRANSFORMATIONS 225 

Since the distribution P~ {x ~ E dy} has a density and so/x" (dy) also has a density, 

t h e n / ~ ( Q )  = /x ' ( i n t  Q) where int Q denotes the interior of Q. 

The family of measures/x" is compact, i.e. from any sequence one can choose a 
weakly converging subsequence. Suppose that /x ", w>/z, then by (4.96) 

(4.97) /x (int Q) _-< lim inf/z ~' (int Q) _-< 5Ds mes O. 

Since (4.97) holds for any closed interval Q disjoint with f~  then it follows from 

(4.97) that the measure /x is absolutely continuous on I \  f ,  with respect to the 

Lebesgue measure on L According to the Introduction (see (0.4)--(0.5)) the measure 
/~ is [~-invariant. 

On the other hand, according to [6] the only [A-invariant measure absolutely 

continuous with respect to Lebesgue measure on I is the measure p.:~ constructed in 

[6]. 
Therefore to prove our Theorem it suffices to show that 

(4.98) /x ( f~)  = 0. 

For this we shall need 

L e m m a  4.4. There exist C,4, 6~ > 0 such that if 6 <-_ 6~ then 

(4.99) P~ {x ,~ E Us (fx)} ~ C44(mes Us (fx))~/2 

provided n is given by (4.92) and e is small enough, where 

u~(fx)= O Us(z). 
z ~ A  

P r o o f .  Without loss of generality we can assume that 

(4.100) 6 <_-�88 fx)-= 80. 

For any Borel set O define 

(4.101) J~(6o, k, z, Q)  =- P~ {x ~ ~ U, o6) for all l = 0 . . . . .  k - 1 and x ~, E O}. 

Employing Lemmas 2.6 and 2.7 in place of Lemmas 2.4 and 2.5 in the proof of 
Lemmas 4.1, 4.2 and Corollary 4.1, one can see for k -> (In e) 2 that 

(4.102) J~(8o, k, z, O)<_ C,5 mes Q 

for some C45 > 0 independent of Q C U28 (fix), z ~ Us ( fx )  and 6 satisfying (4.100). 

Notice that when x 7 stays all the time in I \ U~,,(�89 the situation becomes easier than 

in Lemma 4.1 since according to Lemma 2.1 the map ]'A acts in I \  U,o(�89 as an 

expanding transformation. 

Since m e s f x  = 0  (see [6] Lemma 3.9) and fx  is a closed set then 

mes(U8 (fx))  ~, 0 as 6 ~, O, and so if 6 is small enough then mes(Us (WA)) --< 1/2C4~. 
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Thus by (4.102), 

Pz {x~ ~ U~o(�89 for all l = 0 , . . . ,  k - 1 and x ~  Us (ff~)} 

(4.103) = J~(5o, k, z, Us (~-~)) ~ C45 mes U8 (~'~) <= �89 

provided k = (In e)2 and e is small enough. 

Modifying slightly arguments of Lemma 4.3 one can see that 

P~ {x 7, ~ Us (J'A)} = P~ {x 7 ~ U~, (�89 for all l - -~(ln e) '  and x 7, E Us (~-~)} + ~ ~n. 

(4.104) 

By Corollary 4.1, 

(4.105) P,{x ;~U~,~2) fora l l l>=~( lne ) 'andx~EO}<=2DsmesO 

~ 2  4 provided k =~( lne )  and Q satisfies (2.31). Besides, by (4.103) 

(4.106) P,{x~fY_ U~(�89189 ~ if k >-�88 '. 

Next, by (4.104)--(4.106) and (4.52) one can write 

P , { x : ~  U~ (~-~)} 

< P,{x,  ~ U,, (�89 if n - k > l = ~(ln e) and X~-kE dy} 
l/3(In e) ~'k--~l USO(I/2)\ U~ 1/4(|/2) 

(4.107) 
y ~ 1 fln~)414 x q[~r(z)Y~(8o, k - 1, z, Us (ff~))dz + C,7ne 114 JI- n e  3, .31_ (~). 

I\U8o(1/2) 

<= ne ~ + n(�89176 + C~6ne" 

l/3(In e) a ~ k ~ l  Uno(II2)\U II,t(I/2 ) l\U~o(ll2) 

where n is defined by (4.92) and C~6, C,7 > 0 are independent of x, y, n and 6. 

Employing (4.70) and changing variables v = f~y one obtains 

f q~,,(z) f 
Uao(l/2)\ U. 114012) I\ U~o(I/2 ) 

<=C~s f 
U~xs~(f^ (1/2))\ U3~ ,Iz(f^ (1/2)) 

(4.1o8) 

N C,9 f 
U6xs~(.6. (1/2))\ U2~., in(f~ (1/2)) 

- G9s~(8o, k - 1, us  (er~)) 

./6(60, k - 1, z, Us(~-,))dydz 

f 
q ; ( z ) l / ,  ( �89 v I-"2dv [ s:(~o, k - 1, z, us  (~-~ ))dz 

I\U~o(ll2) 

- . 2 . ~ / ~  k - 1, z, Us (~-~))dz I f~ (�89 z -,6,o0, 
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where we could integrate q~(z) in v without IRA(�89 -'/2 since q~(z) varies 

essentially only when v E U,,-, (z) ,where /3 > 0 can be taken small, and if, in 

addition, v ~  U3~,,,~(fa (�89 then the ratio If~ (�89 v I/If~ (�89 z I is close to one. 
Let h~($o, l, z, v) be the density of J~(~o, l, z, O), i.e. 

J~(60, l, z, Q) = / h~(6o, l, z, v)dv. 
O 

Define re(z) = min{/: If* (�89 z I I(f~+b'(z)l->- ~o}. Then if k - 1 > re(z)  one has 

J~(ao, k - 1, z, U, (3-~)) 

= f f h~(8o, k-m(z)- l ,v,w)dw. 
l\Uao(l/2) Ua(~r~,) 

(4.109) 

Employing the argument about pseudo-orbits similar to the inequality (4.5), 

which says that it suffices to take into account only random trajectories staying in 

the e~-~-neighborhood of images f~y for certain points y, one concludes that 

(4.110) hT(~o, m(z ) ,  z, v)<= h~_(e '-~, m(z);  z, v; y) + e x p ( -  e - ~ )  

for some a g > 0  where y = U~,-,(z)Nf~"(Z)v and 

2t~ , l ; z , v ; y )  . . . .  qr, z(zO. . .q~,z ,_ ,(v)dzl . . .dz~_ 1. 

Using Lemma 3.3 in the same way as in the proof of Lemma 4.1 one can see that 

(4.111) h~(el-O,l;z,v;y)<=Csoe-ll(fl)'(y)l-' exp{-a,,e-llz-yl} 

for some C5o > 0 independent of e, l, z, v and y. 

Now taking into account (4.110), (4.111), the argument (as above) that 

- 1  exp{-a4E-1l z - y  1} can be integrated in z without [fA (~) -z  1-1'2 and that the 

difference I r a ( z ) -  re(y)[ is bounded when z ~  U2A,.,~(f, (�89 and I z - y I -  <_ ~3,4, we 
obtain 

(4.112) 

. f 1 [ h, (&,, l, z, v )dz  h3(8o, l, v )  - l f,, ( ~ ) -  z -"~ " 
2 ~ 12 U,,~(I~,(II ))\U2^ -'(f*( / )) 

c~, If~, ( ' )  - y ( v ) l - " ~ l  f f~) ' (y  ( v ) ) l - '  
--1 1+I  1 -<-- c ~ r ~  I f .  (~ ) -  v I -''~ 

where y (v) = U,,-o (z)  f-1 f~tv; C51, C52 > 0 and 72 > 1. 
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If l = m(y(v) )  then one can see from (4.112), Lemma 2.6 and the definition of 

m(y(v))  that 

(4.113) h;(ao, l, v ) =  < C53y2-' 

where G3 > 0 depends only on 8o. Hence 

J~(~o, k - 1, Us (~-,)) 

(4.114) --< Cs3 / 
{vEl\U,5o(ll2),m(y(v))<k-1} 

yj"(Y(~ f 
u~(~^) 

h ~(&,, k - m(y(v ) )  - 1, v, w)dw 

4- C~=y~ -<~-" f If,~(�89 - v I-"~dw + e x p ( -  e-'~"~). 
U6(,~rA ) 

But 

f I f (�89 v I-,,2dv 
us(~rx) 

k , [-mdv dl - k 1 l-redo --< If~(~)- v 
{v:[f~(l l2)--vI<mes Ua(grA)} {v ]fa(l/2) vl rues UI~(~rA) v E U a (  A)} 

=< 3(mes Us (J-~))m. 

(4.115) 

To estimate the first term in (4.114) we shall use, as in (4.110), the argument 

about pseudo-orbits to obtain that 

h~(60, k - m (y ( v ) ) -  1, v, w) <= ~ h~(e '-~, k - m (y (v)) - 1, v, w ; y,) + exp( - e - ~ ) ,  
yl 

(4.116) 

where {y,}= U~,-o(v)Nf~(*-"(')-lJw such that ffy, f~ Us,,(�89 for all ] = 

0 . . . . .  k - m ( z ) - l .  
Notice that [ m(y (v ) ) -  m(y(y,))[ <_- C5, for some C54 > 0 independent of v and i. 

Then by (4.111), 

(4.117) 

f T2m(Y(V))h ~((~o, k - m ( y ( v ) ) -  1, v, w)dv 
{ v E I \ U a o ( l / 2 ) , m ( y ( ~ ) ) < k - l }  

C ~ y ;  '~'''',~' ~. I f f~- '"~ ' ,"- ' ) ' (y , ) l - '+ e x p ( -  e-*~o) 

for some C55 > O. 
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It is easy to see that 

~ I ff~-~<~(~,)>-')'(y,)l-' ~ mes{x ~ I: f~x ~ Us,/2(�89 for all l = 0 . . . . .  k - m ( y ( y , ) ) -  1} 

(4.118) -~ ~/3(k--m(y(Yl ))-1 

for some 3/3 > 1 where the last inequality follows from Proposition 2.1 of [6]. 

Collecting (4.115), (4.116), (4.118) and (4.119) one obtains 

J~(~o, k - 1, Us (3~)) -< Cs6~/~k-~>((mes Us (8-~))~/z + mes Us (~-,)) 

where 3q = min(3/z, 3~) and C56 > 0; this, together with (4.107) and (4.108), proves 
(4.99) provided e is small enough. 

To complete the proof of (4.98) we employ (0.2), the Chapman-Kolmogorov 
formula (4.96) and (4.99) to obtain 

(4.120) /~  (Us ( ~ ) )  ~ G,(mes  Us (8~))t/z. 

If ~ ' - - ~ / x  then by (4.120), 

(4.121) /z(8-~)_-- </~(int  Us (J-x)) <= lira inf/~"(int  Us (8-~))_- < Csl(mes Us(ff~)) '/2. 

Since mes 8"A = 0  (see Lemma 3.9 of [6]) then rues Us(~-~)--->0 as ~--->0 and, 
together with (4.121), this gives (4.98). 

Proposition A.I.  
tribution functions 

Appendix 

We shall prove here the following 

Let O~ . . . .  , O. be independent random variables with dis- 

P{0k <_-y}= ~ rk(z)dz, 

where the number of points of discontinuity o]" each r~ (z ) is bounded by a number N 

independent of k, on each interval of continuity rk (z ) are Lipschitz continuous with a 

constant L and 

(A.1) rk (Z ) <= Ce -~lzl 

with some C, a > 0 independent of k. Then there exist constants K, 13 > 0 depending 

only on L, N, C, a but independent of-n such that for any non-zero numbers a~ . . . . .  a, 

the distribution function of the random variable 

(A.2) 
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has the derivative, i.e. the probability density function, satisfying 

( A . 3 )  r ~' ..... "(z)_-< K e  -~l~l 

where EOk = f~_= zrk ( z ) d z  is the expectation of Ok. 

P r o o f .  Without loss of generality we shall assume from the beginning that 

E0k = 0 for all k. We shall first prove the integral variant of the inequality (A.3) and 

then, employing the Fourier transform, we shall see that r ........ " has a bounded 

derivative for n => 3 which will imply Proposition A.1. 

L e m m a  A.1  (cf. [7], w ch. I II) .  There exist K~, [3~ > 0 such that 

(A.4) 

for any y >-_ O. 

P r o o I .  

(A.5) 

e { { ~  ........ .{ > y}-< K,e -e , ,  

By (A.1), 

EIO71~ C l z l ' e - ~ ' ~ t d z = 2 C  z=e-~ =+, 
ot 

Put 

(A.6) 

then by (A.5), 

~ t -L/2 
cr~ = a~ la~ I and Xk = trk0k, 

I n 

1+~ E Ix~ I -~ E X k +  t~  Ee ,X~ 
= 3! + " "  

m-'-%~ 

= 1 q 2Ct'o--wt - 
1-1tl~o`-' 

provided Ill is small enough. If Itl < o,/2 then l-ltlcr~o` --~ and w e  c a n  write 

(A.7) Ee 'x~ <= 1 + 4Ct2o'kot2 -3 < e 4 C , ~  -3 

Thus for t, y = 0, 

(A.8) P { ~  ........ ">--Y}=P{e'**""~">--e'Y} <=e-~" I'I Ee'X~ <--e-%'~ 
k ~ l  

where we have used the independency of XE, k = 1 . . . .  , n and the relation 

E~=~ trY, = 1. Fur thermore  for t > 0, 
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Since we suppose that 

(A.IO) EOk= f zrk(z)dz=O 

(A.12) 

we have 

(A.13) 

then for I~1< a it follows that 

[ 2c1~1 '~ 
rn~3 

In particular, for a real ff satisfying 

4 

[ f f l < 8 f + o t  3 

Estimates for big ~" are a little bit more difficult. We shall prove the following 

result. 

L e m m a  A.2 .  There exists a constant K2 > 0 depending only on L, N, C and e, 
such that 

(A.14) I q~k (~)[ <- 

provided [ ~ [ > 2. 

p { ~k~al . . . . . .  n ~ - -  y} = p { ( - -  l "~,I ]" . . . . . . . .  n ) ~ t y  } 

(A.9) = P{e-'*"'  ~ >= e'Y} 

e-tY I-I Ee(-OXk <= e-tYe4CtZ~-s. 
k = l  

Ca - 1 
Taking t = a /2  in (A.8) and (A.9) we shall get (A.4) with/3~ = a /2  and Ki = e , 

proving Lemma A.1. 

Next, we shall need certain estimates of the Fourier transform 

q~k (~) = I e 'rk  (z)dz 
! 

of densities r~ for real ft. We shall start with the estimate near zero which is simpler. 

By (A.1) one has the following estimate for the m-th derivative of q~ at zero, 

'P2"'(O) <= ~ I z l% (z )dz <ZCm, t 
Ol 
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P r o o f .  We can write 

(A.15) ~Pk (~') = / e'~rk (z)dz + f e'r (z)dz + f e'~rk (z)dz. 
I "  

In view of (A.I) we can estimate the first term in (A.15) by 

--a -I log I~'1 

(A.16) C ~ e-<Zrdz C/I~I. 
,.I 

The second term in (A.15) has the same estimate. 

To estimate the third term in (A.15) consider the points of discontinuity for the 

function r~ lying between - a-1 log ] srl and a-I  log I ~'1- Number  them in increasing 
order z~ . . . . .  zt ; by assumption l _-< N. Thus we can write 

~-t IogI~ I ~+I I 
(A.17) I { ei'~rk(z'dz[<=~l s=o ei"rk(Z'dz 

-a-~ gl'gl zi 

where we put zo = - a - '  log l~'l and zl+~ = a - '  log I ~" I. Divide the interval [z~, zj§ 

into subintervals of the same length 2r except for the last interval whose 
length does not exceed 2r I. Let A be one of these intervals of length 2r (I, 
then by the Lipschitz condition 

(A.18) Ife,%(z)az[<__flr~(z)_r~ldz+r~[fe,,,~dz[~4~'-L/lgl~- 
A A A 

where rk a = fark (z)d2 and we take into account that fa e ~Zdz = 0 since the length of 
A equals 2~'/l~l. The total number of these subintervals in [z0, zt+,] equals the 
integral part of (1/2r247 z;)~" so that the sum of our estimates in (A.18) does 
not exceed (2r ~'])(z/+m - zi). The contribution of the remaining subinterval with 
the length less than or equal to 2r does not exceed 2 .c/Icl. Therefore 

zi+a 

(A.19) I f  ei'~r'(z)dz[<~ (C+L(z'+'-z')," 
z i  

By (A.17) and (A.19) we can estimate the third term in (A.15) by 

(NC + 2La-' log I sr I) = ~ ~/2r 2La -'~]. 

Since the first and second terms of (A.15) are bounded by C~ I ~1 we shall get (A.14) 
with 

K2 = 2r + 2)C+ 2Let-~, 
log2 

completing the proof of Lemma A.2. 
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Next, we shall need an estimate for ~ok (~') for the intermediate zone, i.e. for ~" not 

very big and not very small. 

L e m m a  A.3  (see [7], Theorem 1 in ch. I). Let ~p(~) be the Fourier transform of 
a probability distribution G, i.e. q~(~)=f_| c < l  and b are positive 
constants. If  I~(r ~ c for I ~[ >= b then 

1 - c 2 ~  2 forl~l<b. (A.20) [q~(~)[ =< 1 - 8b----~ 

P r o o f .  Let X and 3( be two independent random variables with the distribu- 

tion G. Then, as is well known, the random variable X - X  has the probability 

distribution Q whose Fourier transform equals [q~(~)[ ~. Then we have 

1-1~(~)1 =-- f (1-cosgz)dO(z). 

Clearly, 

�9 2 ~ Z >  I , , t  1 - c o s ~ z = z s m  2 = ~ U - c o s 2 ~ ' z )  

and so 

1 - [  ~o (2g) I = ~ 4(1 - I  q,(~')lb 
which implies 

(A.21) 1 -I  q~(2=ff)ff ~ 4"(1 - [  q~(~.)[2) 

for any positive integer m. 

For ~ = 0 the inequality (A.20) is clear. Let now 0 < [ ~[ < b. Choose n so that 

2 - ' b  <= I ffl < 2- '+ 'b- Then by Assumption [ ,~(2m~)l 2 =< c 2 and so by (A.21) it follows 

that 

2 
[~o(~)[2~1 1 4 c  ~ 1  1-c_______~ 2~2. 

4b 2 

Hence 

1 --  C 2 ~2 
I~(~')l =< 1 - - - ~  - 

proving Lemma A.3 

Now we come back to the proof of Proposition A.1. We are going to estimate the 

Fourier transform q a, ...... "(~) of the probability density r a' ...... " of the random 

variable Wa' ...... - defined by (A.2). Since the random variables 01 . . . .  ,0 ,  are 

independent then 
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(A.22) ,r176 ...... "(~') = l~I ,t,~ (o-~') 
k = l  

where cr~ is defined by (A.6). 

Let 

{ ,,___.2__'.} Y(,(()= k : t r ~ [ ( l < 8 C + a 3  , 

{ ' ( A L L  
a > o.k 1~.1 < max 2, logls r Y/2(~')= k: 8 C + o t 3 =  and 

X3(~') {k: [~'[=>max 2 

n 2 ~  where we put K 2 ( ( ) = ~  if a4/(8c+a3)>-max(2, I~l/logl~l). Since E~=,crk--1 

then at least one of the following three inequalities is true: 

o'~>~ or tr~=>~. (A.23) tr~ _-> ~, ___ 

We shall consider three cases. Suppose that the first inequality in (A.23) is 

satisfied. Employing (A.13) for k E ~ (~ ' )  we have from (A.22) that 

(A.24) 

k r .Vt'j ( .  r ) 

<-- N 1 - <_- e-~2/4 <= e-~2/12 

since 1 - a -< e- ' .  
To estimate r ~ ...... - in the second case notice, first, that one can choose /(3 > 1 

such that 

K21 ~'1-'/2 log I ~'1 -< 1 if 1~'1_-> K3 

and so by (A.14), 

(A.25) ~k (~') --< I ~" I -~'z if I~'l => g3. 

Applying (A.20) when K3>l#l>=~,4/(8C+a 3) and (A.25) when I~'l_->g3 one 

concludes that 

, : (1  - K;') ~ _ 
(A.26) I~k (~')1 = max ( r 3  ''2, 1 - 8K32(8C + a3)2] = y < 1 

provided [ ~l ----> or4/( 8 C  + 0~3)" Hence 

(A.27) ItPk (trk~')l --< Y if k E ff/'z(~'). 

Suppose that the second inequality in (A.23) holds true. Since 
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o'k < max(21 "f -1 a, , ( logt{I)- ' )  if k~YG(~) ,  

then the number ~'z(~) of elements in ~ ( ~ )  satisfies 

1 <  ~ o-~< v~(~)max(4]~]-Z,(log]~l)-:), 
3 =  k (o 

i.e. 

(A.28) v2(~) > ~ min(�88 ~" 12, (log I ~" I)2) �9 

By (A.22) and (A.27) we see that 
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I r  ...... "(~')1--< I-I I,,,~(o~r 

(A.31) 
<= IC?"'l~l-~"" [I ~ ' l o g ( ~  I~1) 

where V3(~) is the number of elements in X3(~'). Since l > o'k-> (log[~'l)-' if 
k E Y/'3(~') and log2<= log(o-k 1r162 the .  we derive from (A.31) that 

(A.32) I q~ ~ ....... (~')l =< K~(~ I ~" I- '(~176 I ~'l) 2"'t~ 

There exists Ks > 0 such that 

sup (K21 ~ [-'"(log I K t) 2) = ~ < 1. 
gl~rs 

Then (A.32) implies 

1 if I ~ ] < r 5 ,  

(A.33) Iq~ ........ "(~')l =< lift -3~' ' ' '  if I~l=>Ks. 

In particular, if v3(~')=> 3 we get the estimate 

(A.34) ]q~a, ...... .(~)1____1r if Ir 

The case v3(~) = 1 or 2 must be treated separately. In this case there exists 

ko E ~3(~) such that (rE,, => l/k/6.  For convenience of notation only assume that 

(A.29) Iq ~ ........ "(~')1-<- l-I Iq~(~ <-- Y~"'- 

From (A.28) it follows that for each l > 0  there exists K 4 ( / ) > 0  such that 

~,-2,,,____ K,(/)lffl-'. In particular, one can write 

(m.30) [q~" ...... "(~)1--</';,(3)1 ~r 1-3. 

Finally, we shall consider the case when the third inequality in (A.23) holds true. 

When k 6 ~3(~') we can estimate q~k (crk~') by means of (A.14) to obtain 



236 A. KATOK AND Y. KIFER 

ko  = n.  Then we can write, using (A.13), 

.-1 1 ) 
r ........ "(z) = P 'rk0k ~ dy o', r, ( or, 

{y:lz-yl<lzl/2} {y:lz-yl>~lz[/2) 

.--1 

Using the notation ~ ' " ' ~ - - '  defined by (A.2) we have 

k = l  \ k ~ l  

Since ,-i 2<  ~ = j  o'k_-_ 1, then employing Lemma A.1 we conclude 

(A.36) <- KI e-~'m/2. 

Now (A.35) and (A.36) give (A.3) directly for the case when there exists ko such 
that cry-> 1/V~. If this is not true then ~p~' ...... " satisfies one of the inequalities 

(A.24), (A.30) or (A.34). These inequalities show then that there exists a constant 
K6 > 0 independent of al . . . . .  a, and n such that 

o~ 

Ir I~0 ~' ...... "(~')[ d~_-< g ~ <  ~ .  (A.37) 

Using the inverse Fourier transform formula we see that 

1 ( 
ra l  "(z)=~--~ J e - '~o  ........ "(~')d~" 

and so, by (A.37), 

(A.38) [ d  r ~, ....... ( z ) l <  1 =~--~ K~. 

From (A.4) it follows for z _-< 0 that 

z+e-~f  zl2 

(A.39) = ( r o, ...... . (y)dy 
Q r  

Z 

> ral ...... . ( z ) e - , l z l2  K 6  e_plz 
= 2~r  
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since, by (A.38), 

[ r(y)- r(z)[--<2~ e-~lZl2 when y E [z, z + e-~'~/2]. 

Therefore 

r" ...... " ( z ) < ( K ~ + 2 ~  ) e -~'z'2 

completing the proof of (A.3) for z > 0. For negative z the proof remains the same 
by considering the integral from z -  e - t ' ' ' /2  to z. 
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