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ABSTRACT. The first part of the paper begins with an introduction into Anosov 
actions of Zfc and Mk and an overview of the method of studying invariant 
measures for such actions based on consideration of conditional measures along 
various invariant foliations. The main body of that part contains a detailed 
proof of a modified version of the main theorem from [KS3] for actions by toral 
automorphisms of with applications to rigidity of the measurable structure of 
such actions with respect to Lebesgue measure. In the second part principal 
technical tools for studying nonuniformly hyperbolic actions of Zk and Rk are 
introduced and developed. These include Lyapunov characteristic exponents, 
nonstationary normal forms and Lyapunov Hoelder structures. At the end new 
rigidity results for Z2 actions on three-dimensional manifolds are outlined. 

In this paper we discuss various results concerning invariant measures for ac­
tions of higher-rank abelian groups, i.e. Zk and Rk for /c > 2 on compact differen-
tiable manifolds which display certain hyperbolic behavior. Similarly to the rank 
one case, hyperbolicity can be full or partial, and uniform or nonuniform. Full (corr. 
partial) uniform hyperbolicity appears for Anosov (corr. partially hyperbolic) ac­
tions. Nonuniform hyperbolicity appears for actions preserving measures for which 
all (for the full case) or some (for partial case) Lyapunov characteristic exponents 
do not vanish. Two parts of the paper deal with the uniform and nonuniform cases 
correspondingly. 

While the final text of this paper is the product of a joint effort, the basic 
drafts of various parts were written separately: that for Section 3 was written by 
B. Kalinin and based on a part of his Ph. D. thesis; for the rest of the paper the 
draft was written by A. Katok. 
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594 BORIS KALININ AND ANATOLE KATOK 

Part I. UNIFORMLY HYPERBOLIC ACTIONS 

1. Definitions and examples 

1.1. Anosov and partially hyperbolic actions. 
1.1.1. Anosov actions of discrete and continuous groups. A smooth action a 

of a discrete group T on a compact manifold M is called Anosov if for some 7 G 
T, a(7) is an Anosov diffeomorphism, i.e. the tangent bundle TM splits in an (2(7) 
invariant way into two subbundles (distributions) E~ and E+ called the stable (or 
contracting) and unstable (or expanding) bundles (or distributions) correspondingly 
such that for some A, 0 < A < 1 and C > 1 and for all positive integers m, 

(1.1.1) \\D(a(7
m))(v)\\<CXm, 

if v € E~ and 

(1.1.2) WDiamMW^C^X-™, 

iive E+. 
Here || • || is the norm in TM generated by a Riemannian metric on M and 

D is the derivative map. The constant C (but not A) depends on the choice of 
Riemannian metric. 

More generally, a smooth locally free action of a Lie group G is called Anosov 
(or normally hyperbolic) if for a certain element conditions (1.1.1) and (1.1.2) hold 
for E~~ and E+ in the splitting TM = E0 0 E~ 0 £"+, where E0 is the tangent 
bundle to the orbit foliation of the action. See [KS1] for a more detailed discussion. 
Such an element 7 is then called normally hyperbolic. In this case the distributions 
E~ and E+ are often called the strong stable and the strong unstable distributions. 

The general theory of Anosov actions even for higher-rank abelian groups is 
not well developed. The first serious obstruction is the following open question. 
Problem. For an Anosov action ofM.k, k > 2 is the set Af of normally hyperbolic 
elements dense? 

A similar question for Zk actions is reduced to this one via suspension construc­
tion (Section 1.2.2). The set Af is open and its connected components are convex 
cones. In all known examples B,k \Af is the union of finitely many hyperplanes (c/. 
Lyapunov hyperplanes, Sections 1.2.3, 1.3, 5.2). 

1.1.2. Partially hyperbolic actions. A more general class is formed by partially 
hyperbolic actions. A G action a is called partially hyperbolic if there is an 7 E G 
and a ce(7)-invariant splitting TM = E~ 0 E+ 0 E°, with E~ and E+ satisfying 
(1.1.1) and (1.1.2) as before and E° the "slow" distribution with 

(1.1.3) ( C ' r V " m > ||JD(a(7
m))(«)|| < C V m 

for some /i, A < \i < 1 and C' > 1. 
1.1.3. Contrast between rank one and higher rank. Any discussion of Anosov 

actions of higher rank abelian groups requires a certain condition of being "gen­
uinely higher rank" in order to avoid products of rank one actions and other situ­
ations which can be reduced to the rank one case. The structure of such actions 
in the higher-rank case looks quite different and much more rigid than in the clas­
sical rank one situation of diffeomorphisms (Z-actions) and flows (R-actions). All 
known examples of such actions satisfying the "genuine higher rank" assumptions 
are algebraic up to a differentiable conjugacy. In particular, most algebraic actions 
are known to be differentiably rigid [KS2]. For the algebraic actions a natural 

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



INVARIANT MEASURES FOR ACTIONS OF ABELIAN GROUPS 595 

condition is absence of rank one algebraic factors. (See e.g. Section 3.1, condition 
(7Z/)). Thus studying invariant measures for irreducible algebraic Anosov (and in 
certain cases, also partially hyperbolic) actions is quite natural. 

One of the main differences between the rank one and higher rank situations 
may be highlighted as follows. In the former case the robust orbit structure is 
well-described by the Markov model via a Markov partition (see, e.g. [KH], Sec­
tion 18.7). In particular, any invariant measure for the topological Markov chain 
associated with a Markov partition produces an invariant measure for the hyper­
bolic system in question. The variety of invariant measures, both well-structured 
and not, for a topological Markov chain, is huge; hence the same is true for the 
hyperbolic systems. In the higher-rank case the Markov model is not applicable, 
since natural topological Markov chains consist of maps with infinite topological 
entropy. Hence algebraic models should be understood more directly. 

1.2. Higher Rank Actions by Toral Automorphisms. The most basic 
examples of smooth hyperbolic actions of higher rank abelian groups are actions 
by automorphisms of a torus and their suspensions. 

1.2.1. Preliminaries. Denote by GL{m1 Z) the group of integral mxm matrices 
with determinant 1 or — 1. Any matrix A G GL(m,Z) defines an automorphism of 
the torus Tm = R m / Z m which we denote by FA. 

The automorphism FA is ergodic with respect to Lebesgue measure on T m if 
and only if no eigenvalue of A is a root of unity. 

This can be seen by considering the dual automorphism on the group of char­
acters Z m . If A (and hence the transposed matrix A1) has an r t h root of unity 
as an eigenvalue there is a rational (and hence also an integer) invariant vector for 
(-A*)r. Hence the operator Upr induced by {FA)V on L2, has a nonconstant in­
variant function, the corresponding character %> and YllZo X ° (F\) m a n mv&riant 
nonconstant function for UpA • 

On the other hand, if there are no roots of unity among the eigenvalues, all 
orbits of A* acting on the characters, save the constants, are infinite and hence the 
operator UF^ has countable Lebesgue spectrum in the orthogonal complement to 
the constant and thus FA is ergodic. 

Furthermore, in the latter case A has an eigenvalue of absolute value greater 
then one (this can be seen by using a bit of linear algebra and a compactness 
argument), and FA is a Bernoulli automorphism with respect to Lebesgue measure 
[Kat]. 

Any Zfc action a by automorphisms of T m is given by an embedding pa : Zfc —» 
GL(m, Z) such that a(n) = FP a(n), where n — (ni, ...,rik) £ Zfc. 

Let a\ and a2 be two Zfc actions by automorphisms of T m i and Tm 2 corre­
spondingly. The action c\2 is called an algebraic factor of a\ if there exists an 
epimorphism h: T m i —» Tm2 such that h o a\ = c*2 ° h. 

The action a is called irreducible if any algebraic factor has finite fibers, i.e. 
acts on the torus of the same dimension. Equivalently, a does not have any invari­
ant subtorus of lower dimension, or pa contains a matrix with irreducible charac­
teristic polynomial [B]. In [KS3, KS4] irreducible actions are called completely 
irreducible. 

1.2.2. Suspension construction. It will be more convenient for us to operate 
with Efc actions so we would like to pass from an action of Zfc to the corresponding 
action of Rk. This is the so-called suspension construction. 
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596 BORIS KALININ AND ANATOLE KATOK 

Suppose Zk acts on T m . Embed Zk as a lattice in M.k. Given a Zk action a on 
the torus let Zk act on R^ x T m by 

(1.2.1) a(n)(t, x) = (t- n, a(n)(x)) 

and form the quotient 

(1.2.2) M = Rk xT m /Z f c . 

Note that the "vertical" action V of Rk on E f c xT m by Vs{t, x) = (£+s, x) commutes 
with the Zfc-action and therefore descends to M. This Reaction is called the 
suspension of the Zfc-action. 

Note that any Zfc-invariant measure on T m lifts to a unique Rfc-invariant mea­
sure on M. 

The manifold M is a fibration over the "time" torus Tk with the fiber Tm. We 
note that TM splits into the direct sum TM = TfM 0 T0M where TfM is the 
subbundle tangent to the T m fibers and T0M is the subbundle tangent to the orbit 
foliation. 

Remark. The suspension construction is of very general nature. Namely, let 
a be an action of Zk on a space X with a certain structure (measure, topology, 
differentiable, homogeneous, etc). Then (1.2.1) defines an action on the product 
and the factor (1.2.2) possesses the structure of the skew product over Tk with the 
fiber X and inherits the structure from the fiber. This structure is preserved by 
the suspension action of Rfc. 

1.2.3. Eigenvalues and Lyapunov Exponents. Let us denote by Ai,...,Ak the 
generators of the action a, i.e. the images under pa of the standard generators of 
Zk. For each Ai Rm splits as the direct sum of the root spaces of Ai: 

R m = 0 Ker(At-X)m. 
XeSpAi 

Since the matrices Ai commute there exists an invariant splitting Rm = 0 Vj which 
is a common refinement of the above splittings. It is called the root decomposition 
for the action a. It follows that the tangent bundle TT m = Tm x Rm splits into 
the direct sum of the invariant subbundles corresponding to subspaces Vj. The 
Lyapunov exponent A(a(n), v) exists for every element a(n) G Ga and every vector 
v G TT m . If v lies in one of the subbundles then A(a(n), v) equals to the logarithm 
of the absolute value of the corresponding eigenvalue of element a(n). Moreover, 
A(a(-), v) is an additive functional on Zk. Combining the subspaces Vj correspond­
ing to the same Lyapunov exponent we obtain a more robust decomposition than 
the root decomposition which is called the Lyapunov decomposition for the action 
a. For the detailed discussion of Lyapunov exponents for Zk and Rfc actions by 
automorphisms of tori and solenoids including the non-Archimedean exponents ap­
pearing from p-adic valuations, see [KS3, Section 2 and Appendix]. We will return 
to the discussion of Lyapunov exponents in greater generality, first for algebraic 
actions in Section 1.3, and then in the general setting in Section 5. 

The Lyapunov exponent for the suspension corresponding to T0M is always 
identically zero. To exclude this trivial case, when we speak of Lyapunov expo­
nents we will always mean the Lyapunov exponents corresponding to TfM. These 
Lyapunov exponents of the Rfc action are the extensions of the Lyapunov exponents 
of the Zk action to the linear functionals on Rfc. The kernels of non-zero Lyapunov 
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exponents are called Lyapunov hyperplanes. Lyapunov exponents may be propor­
tional to each other with positive or negative coefficients. In this case, they define 
the same Lyapunov hyperplane. The action is Anosov (Section 1.1) if there are no 
non-trivial identically zero Lyapunov exponents. 

Definition. The action a is called totally nonsymplectic (TNS) if no Lyapunov 
exponents are proportional with a negative coefficient. 

For a generalization of this concept see Section 5.2. 
An element a G Rk is called regular if it does not belong to any Lyapunov 

hyperplane. All other elements are called singular. We call a singular element 
generic if it belongs to only one Lyapunov hyperplane. A regular element for an 
Anosov action is called an Anosov element 

In the situation we are considering now, i.e for actions by automorphisms of 
the torus and for the suspensions of such actions, every Lyapunov subspace is 
uniquely integrable to a homogeneous foliation. This is not always the case for 
more general actions including homogeneous ones (Section 1.3); the coarse Lya­
punov decomposition which combines positively proportional Lyapunov exponents 
is always integrable (Section 5.2). 

For an element a E Rfc let us define the stable, unstable and center distributions 
E~, E+ and E® as the sum of the Lyapunov spaces for which the value of the 
corresponding Lyapunov exponent on a is negative, positive, and 0 respectively. 
For any singular element a the center distributions E® always contains an invariant 
subdistribution E^, called isometric distribution. For an element a we will denote 
the integral foliations of the stable, unstable, center and isometric distributions E~, 
£ + , E°a and E*a by W~, W+, W* and W*a correspondingly. 

1.3. General algebraic actions. Now we will consider "essentially alge­
braic" partially hyperbolic (in particular Anosov) actions of either Rk or Zk more 
general than actions by toral automorphisms and their suspensions. 

We recall that an action of a group G on a compact manifold is Anosov if 
some element g G G acts normally hyperbolically with respect to the orbit foliation 
(Section 1.1; see [KS1] for more details). 

1.3.1. Affine actions of discrete groups. To clarify the notion of an algebraic 
action, let us first define affine algebraic actions of discrete groups. Let H be 
a connected Lie group with A C H a cocompact lattice. Define Aff(H) as the 
set of diffeomorphisms of H which map right invariant vector-fields on H to right 
invariant vectorfields. Define AS (H/A) to be the diffeomorphisms of H/A which 
lift to elements of AS(H). Finally, define an action p of a discrete group G on H/A 
to be affine algebraic if p(g) is given by some homomorphism G —> AS (H/A). Let 
f) be the Lie algebra of H. Identifying \) with the right invariant vectorfields on 
H, any affine algebraic action determines a homomorphism a : G —> Aut \). Call a 
the linear part of this action. We will also allow quotient actions of these on finite 
quotients of H/A, e.g. on infranilmanifolds. For any Anosov algebraic action of a 
discrete group G, H has to be nilpotent (cf. eg. [GS], Proposition 3.13). 

1.3.2. Algebraic Rfc-actions. Suppose Rfc C H is a subgroup of a connected Lie 
group H. Let Rfc act on a compact quotient H/A by left translations where A is 
a lattice in H. Suppose C is a compact subgroup of H which commutes with Rfc. 
Then the Reaction on H/A descends to an action on M — C \ H/A. The general 
algebraic Reaction p is a finite factor of such an action. Let c be the Lie algebra of 
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C. The linear part of p is the representation of Rfc on c \ I) induced by the adjoint 
representation of Rfc on the Lie algebra J) of H. 

Let us note that the suspension (Section 1.2.2) of an algebraic Zfc-action is an 
algebraic Reaction (cf. [KS1], Section 2.2). 

Let p be an algebraic action of Rk, not necessarily Anosov. For a given a G Rk 

we denote the strong stable foliation of p(a) by W~, the strong stable distribution 
by E~, and the 0-Lyapunov space by E®. Note that E® is always integrable for al­
gebraic actions. Denote the corresponding foliation by W^. For a p-invariant Borel 
probability measure \i let us denote by £a the partition into ergodic components of 
the element p(a), by h^(a) the measure-theoretic entropy of the map p(a) and by 
7r(a) the 7r-partition of p(a). Recall that n(a) is in fact equal to the measurable 
hull £(W~) of the partition into the leaves of the strong stable foliation W~. 

1.3.3. Lyapunov exponents. Let us describe the structure of the linear part of 
an algebraic Rfc actions in more detail. In fact, we will first consider the case on the 
actions on H/A. The Lie algebra [) splits into root spaces rja,a G E of the adjoint 
representation. The roots are linear functionals on Rh and their real parts in fact 
coincide with the Lyapunov exponents of the action p. The positive half-space 
3la > 0 is called a Lyapunov half-space and its boundary a Lyapunov hyperplane. 
Let us denote the sum of root spaces with a given Lyapunov half-space L by rjL. 
Combining roots with the same real parts and taking corresponding right-invariant 
distribution we obtain Lyapunov distributions] Lyapunov distributions for differ­
ent Lyapunov exponents form the Lyapunov decomposition. Combining Lyapunov 
distributions with the same Lyapunov half-space one obtains coarse Lyapunov dis­
tributions which form the coarse Lyapunov decomposition. 

The strong stable distribution E~ for an element a G Rfc equals the sum of Lya­
punov distributions Ea for those a for which a (a) < 0. In particular, E~ is the sum 
of certain coarse Lyapunov distributions. Conversely, any coarse Lyapunov distri­
bution equals to the intersection of strong stable distributions for certain elements 
of the action. Thus, any coarse Lyapunov distribution integrates to a homogeneous 
foliation whose leaves are in fact cosets of a nilpotent subgroup of H. For the 
Lyapunov half-space L let us denote this nilpotent subgroup by NL. By picking 
an element a on the boundary of L which does not lie on any other Lyapunov hy­
perplane (such an element is called generic singular) and an element b inside L we 
see that EL — E® D E^ and hence E^ is the direct sum of E® D E^ for several 
generic singular elements c^. 

Notice that unlike the case of actions by automorphisms of a torus Lyapunov 
distributions may not be integrable. 

The case of an action on a double coset space is not too different. In fact 
the kernel of the projection lies in the 0-Lyapunov distributions for all elements 
a G Rfc. Thus the picture on M is essentially the same as in H/A, only the zero 
Lyapunov exponent has lower multiplicity. This is why, in particular, the double 
coset construction appears in many standard examples of Anosov Rfc actions. 

1.4. Conditional measures. We will study the rigidity of invariant measures 
based on understanding of their conditional measures on some natural invariant 
foliations. Let us briefly recall how a probability measure v on a manifold M 
determines a system of conditional measures on a foliation F. For a more detailed 
overview see [KS3], Section 4. 
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Denote by 3 the Borel cr-algebra on M. A measurable partition £ of M is a 
partition of M such that, up to a set of measure 0, the quotient space M/£ is 
separated by a countable number of measurable sets [R]. For every x in a set of 
full i/-measure there is a probability measure z/J defined on £(#), the element of £ 
containing x, and satisfying the following properties: If 2>£ is the sub-<j-algebra of 
2 whose elements are unions of elements of £, and A C M is a measurable set, then 
x i—> ^|(^4) is ^-measurable and ^(^4) = / v^.(A)v(dx). These conditions determine 
the measures z/| uniquely. 

Let F be a foliation with smooth leaves and let us denote by F(x) the leaf 
through x. Even though all foliations that we are going to consider in the next 
section will be linear, the partition into the leaves of F is not a measurable partition 
in general. Conditional measures on the leaves of the foliations that we will be 
working with are cr-finite locally finite measures i/£ defined up to a multiplicative 
constant. In other words, for almost every x G M and for open sets A, B C F(x) 

with compact closures one can canonically define the ratio ^XF\B{ • The conditional 
measures can be defined as follows. 

Let us call a measurable partition £ subordinate to F if for v-a.e. x we have 
£(#) C F(x) and £(x) contains a neighborhood of x open in the submanifold topol­
ogy of F(x). Note that two different partitions subordinate to the same foliation 
determine conditional measures that are scalar multiples when restricted to the 
intersection of an element of one partition with an element of the other partition. 
Thus there is a locally finite measure v^. on F(x) uniquely defined up to scaling 
that restricts to a scalar multiple of a conditional measure for each partition sub­
ordinate to F. The measures v^ form the system of conditional measures on the 
leaves of F. 

Let cr(F) denote the cr-algebra of all sets that consist a.e. of complete leaves of 
F. It corresponds to a unique measurable partition which is called the measurable 
hull of F , and is denoted by £(F). It is the finest measurable partition whose 
elements consist a.e. of the entire leaves of F. 

Notice that if the conditional measures on leaves of a foliation are J-measures 
as will often be the case in the course of our considerations then a posteriori the 
partition into leaves of the foliation turns out to be measurable, indeed equivalent 
to the partition e of the space into single points. 

The next proposition is one of the expressions of fact that entropy measure 
uncertainly in the future given complete knowledge of the past. In particular, zero 
entropy implies that the past uniquely determines the future. This proposition is 
a particular case of [KS3, Proposition 4.1]. 

PROPOSITION 1.1. Let f be a diffeomorphisms of a compact manifold, W be a 
an f-invariant expanding foliation, i.e. \\Dfl\\Tw\\ < 1? and fi be an f-invariant 
Borel probability measure. 

If the entropy hfJj(f) = 0 then conditional measures induced by \i on the leaves 
of the foliation W are 5-measures, i.e. for almost every leaf the conditional measure 
is concentrated at a single point. 

If hfl(f) > 0 then conditional measures on almost all leaves are nonatomic. 

1.5. Invariant measures for algebraic Anosov actions. All known er-
godic invariant measures for algebraic Anosov actions of higher-rank abelian groups 
can be classified as follows 
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(1) Haar measures on homogeneous invariant submanifolds; 
(2) Lifts of invariant measures from rank one factors on invariant homoge­

neous submanifolds. 

The first case includes the measures concentrated on compact (periodic) orbits; 
these measures obviously have zero entropy for all elements of the action. Note that 
the union of such orbits is dense. 

Appearance of the second case indicates certain reducibility. While it is rea­
sonable to conjecture that no other ergodic measures exist ([KS3], Introduction) 
current methods allow to deal only with measures which somehow reflect the hy­
perbolic behavior of the system. The standard assumption would be that a certain 
element of the action has positive entropy with respect to the measure. This is 
crucial since our methods are based on considerations of conditional measures in­
duced by an invariant measure on stable foliations of various elements of an action 
as well as on various invariant subfoliations of such foliations. As 1.1 shows such 
a measure must induce nontrivial (in fact, nonatomic) conditional measures on the 
leaves of the stable and unstable foliations for any element of the action. 

A hyperbolic map has zero entropy with respect to an invariant measure if 
and only if the conditional measures on its contracting foliation are atomic which 
happens to be equivalent in this case that these are (5-measures. Under various 
assumptions we are able to show that an alternative to being atomic for the condi­
tional measure is to be Haar on a certain homogeneous submanifold. This in turn 
in certain situations leads to the conclusion that the measure itself is of type (1) 
above. 

This approach has been developed in [KS3]. The case of actions by auto­
morphisms of the torus (as well as the more general non-invertible situation) is 
discussed in [KS3] in greater detail; the symmetric space actions (Weyl chamber 
flows and related actions) as well as twisted Weyl chamber flows are also considered. 
There are gaps in the proofs of the main results both for the toral case (Theorem 
5.1) and for the symmetric space case (Theorem 7.1), which were partially corrected 
in [KS4]. In Section 3 we give a complete argument for the proof of the main theo­
rem in the toral case with a properly modified formulation. This theorem yields the 
rigidity of measure-preserving conjugacies, centralizers and factors. These results 
are presented in Section 4; [KKS] contains applications of these results which use 
some subtle number-theoretic information. Apart from presenting complete proofs 
of the above theorem our arguments have an extra value because they elaborate an 
important method whose uses extend beyond this particular proof. For example, 
essentially the same method is used in the proof of rigidity of joinings in [KaK]. 

Before doing that in the next section we will explain some of the main features 
of the method by considering in a less formal way a special case of a Z2 action 
on the three-dimensional torus by hyperbolic automorphisms. In this example the 
underlying geometric structure is quite transparent and a number of complications 
which appear in more general situations do not show up. In more general cases in 
order to conclude the desired dichotomy (Haar on a rational subtorus or a homoge­
neous invariant submanifold, or zero entropy) one needs extra assumptions on the 
action (e.g. irreducibility in the toral case ) or on the measure (such as K-property, 
or, in the symmetric space case, weak mixing). The conclusion in general is also 
somewhat weaker. 
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2. T h e s imples t h igher rank m o d e l s 

2 .1 . Car tan ac t ion o n t h e three—dimensional torus . The following spe­
cial case provides an excellent insight in the core features of the method used to 
study rigidity of invariant measures. 

Let A G 5X(3 ,Z) be any hyperbolic matrix with distinct real eigenvalues. By 
passing to a power, if necessary, we may assume tha t its eigenvalues Ai, A2, A3 
are all positive. By the Dirichlet unit theorem the centralizer of A in SX(3, Z) 
is a finite extension of Z 2 . See [KKS] for a more detailed discussion and [BS] 
for the number-theoretic background. In particular, this centralizer contains a 
subgroup isomorphic to Z 2 which consist of hyperbolic matrices. Such a subgroup 
a determines an action of Z 2 on the three-dimensional torus T 3 by hyperbolic 
automorphisms which we will denote by p. (See Section 1.2) All elements of a 
are simultaneously diagonalizable. The eigenvectors define three one-dimensional 
p-invariant linear foliations on the torus, W\, W2 and W3. Each of these foliations 
possesses the natural affine parameter which is preserved by p. This is just another 
way of saying tha t the Euclidean length along each foliation is multiplied by each 
element of the action p by a constant which is equal to the absolute value of the 
corresponding eigenvalue. While no element of the action has an eigenvalue one 
or minus one there are elements for which the eigenvalue is arbitrary close to one. 
A useful technical devise is the suspension construction which by passing from 
the torus to a certain five-dimensional solvmanifold (an extension of T 2 by T3) 
produces an R2 action a quite closely reflecting the features of the action p. (See 
Section 1.2.2) In particular, the "fiber" T 3 direction splits into three invariant 
directions generating invariant foliations which we will still denote by W\, W2 and 
W3. For each of these foliations there is an irrational direction in R2 such tha t the 
action along this direction preserves the length along the foliation. This direction is 
tha t of the kernel of the corresponding Lyapunov characteristic exponent, i.e. the 
Lyapunov hyperplanes defined in 1.2.3 which are of course just lines in our case. 
Call this direction the critical direction for the corresponding foliation. See Section 
5.2 below for pertinent definitions in much greater generality. 

2.2. R ig id i ty of invariant m e a s u r e s for C a r t a n ac t ions . Now consider 
an ergodic invariant measure for the action p. We will show tha t 

(T>) Either every element of the action has zero entropy with respect to this measure 
or the measure is Lebesgue measure on T 3 . 

First, extend the measure in a canonical way to an (also ergodic) invariant 
measure p of the suspension action a. Let W be one of the three invariant foliations 
described above. The action preserves the system of conditional measures on the 
leaves on W. (See Section 1.4). Our argument works if the action in the critical 
direction is ergodic with respect to /i, or, more generally, 

(£) The ergodic components of the action in the critical direction consist of the whole 
leaves of W. 

This assumption will be later justified for any measure ergodic with respect to 
p. Under assumption (£) we will show that 

(T) For almost every leaf L of the foliation W the conditional measure pi is in­
variant under the set of translations of full PL measure. 
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Naturally, translations are defined with respect to the Euclidean length param­
eter. Here we mean invariance in an exact sense, not up to a scalar multiple. In 
other words, the measure \±L is defined up to a scalar multiple but for any choice 
of normalization the measure is invariant with respect to almost every translation. 

2.2.1. Thus L can be identified with the real line. Let us show tha t property 
(T) implies tha t 

The measure /LI^ is either concentrated in a single point, or is a counting mea­
sure concentrated on a certain arithmetic progression, or is invariant under all 
translations, i.e. is simply Lebesgue measure on the line. 

For, the measure is either atomic or continuous (translations cannot mix two 
parts) . In the former case the atoms all have the same measure and hence must be 
isolated since otherwise the measure would not be locally finite. If there is more 
than one a tom then the support is invariant by every translation taking one atom 
into another, wmich hence have to form a lattice. 

If the measure is nonatomic than the set of translations under which it is in­
variant contains two rationally independent translations. Any locally finite measure 
on the line invariant under two rationally independent translations generates a fi­
nite measure on the circle (the factor by the first translation) invariant under an 
irrational translation and is hence Lebesgue. 

Notice tha t ergodicity of the action implies tha t only one of the possibilities is 
realized for almost every leaf L. 

The lattice case is, in fact, impossible due to the presence of the elements in 
the actions which expand the length parameter along W. For, any such element 
would map the set of leaves with a given value of the progression into the set with 
a strictly bigger value contradicting the Poincare recurrence theorem. 

Now assume tha t for almost every leaf L the measure [II is concentrated in a 
single point. The foliation W is the strong stable foliation of a certain elements of 
our action. But this implies tha t the entropy of those elements is equal to zero. 
These elements form a convex open set in R2 (a Weyl chamber, see Section 5.2. The 
inverses of these elements also have zero entropy. Since entropy is a sub-additive 
function on R2 ( [H], Theorem B), it is equal to zero identically on R2. 

If on the other hand, the measures JIL are Lebesgue then the same is true for 
the conditional measures on the linear foliation on the torus. A fixed translation 
along the leaves of such a foliation is the linear flow on the torus which is in our 
case uniquely ergodic due to the fact tha t our action is irreducible over rationals 
(no invariant rational subtori). Since the conditional measures are invariant under 
translations so is the global measure which produces those conditionals. Hence by 
unique ergodicity the measure is itself Lebesgue. 

An alternative argument does not use unique ergodicity of irrational transla­
tions. Instead one notice tha t any of the three invariant foliations W\, W2 and W3 
can play the role of W in the above argument. Since for any of these there is an 
element of the action for which it is the whole stable foliation, if at least one of the 
three systems of conditional measures are atomic the entropy of this element and 
hence of any element of the action vanishes. On the other hand, if all three systems 
of conditional measures are Lebesgue, then by Fubini Theorem the global measure 
is also Lebesgue. 

2.2.2. Now we will explain why property (T) holds. This is done in two steps. 
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Step 1. The measures are invariant in the afhne sense: the translations are 
proportional up to a scalar multiple. To that end, let us fix the normalization at 
/i-almost every point x in such a way that the conditional measure of the interval 
I(x) of length one on the leaf L(x) centered at x is equal to one. Identifying I{x) 
with the standard interval [0,1] via the length parameter we obtain a Borel map 
from our space to the set of probability measures on the unit interval provided with 
the weak* topology. On a compact subset C of measure arbitrary close to one this 
map is continuous (Luzin Theorem). A typical compact piece of a leaf intersects 
such a subset by a set of almost full conditional measure. Now use our ergodicity 
assumption (£). Starting from a typical point x on a typical leaf L and moving 
in the critical direction the interval I(x) comes arbitrary close to JIL almost every 
point y G L. In particular, if one assumes that both x and y are typical points 
of one of the continuity sets C described above, one may assert that the returns 
also appear on the set C. But this implies that in the limit the images of the 
conditional measures on I(x) weakly converge to the conditional measure on I(y). 
On the other hand, since we move along the critical direction the interval I(x) is 
simply translated. Hence, the normalized conditional measure on I(y) coincides 
with a translation of the normalized conditional measure on I(x). 

Step 2. The normalization constant which we will denote c(x, y), is in fact equal 
to one. This again follows from the Poincare recurrence. For, obviously, this con­
stant is equivariant with respect to the action: for a G R2, c(a(a)x, a(a)y) = c(x, y). 
Secondly this is cocycle: c{x,y)c(y,z) — c{x\z). The latter condition implies that 
along a typical leaf the density is exponential with respect to the natural length 
parameter. Taking an element a for which a (a) contracts the foliation W we see 
that the exponent must grow contradicting the Poincare recurrence Theorem again, 
unless it is zero, i.e. the conditional measure is indeed Lebesgue. 

2.2.3. Finally, we need to check assumption (£) for any (^-invariant ergodic 
measure, namely to show that the ergodic components for the action in the critical 
direction consist of the whole leaves of W. To that end we will use the structure 
of stable and unstable foliations for different elements or the action. In fact, for 
any of the three foliations there exists an element a G l 2 such that this foliation is 
the stable foliation of a(a) and the sum of the other two is the unstable one. On 
the other hand, the classical Hopf argument shows that ergodic decomposition for 
any element consists of complete leaves of its stable and unstable foliations: the 
positive (negative) time average of any continuous function is constant along the 
stable (unstable) leaves. The remaining ingredient is an important observation that 
for a normally hyperbolic (generic) element of the action the measurable hulls of 
partitions into leaves of the stable and unstable foliation coincide, because each of 
them generates the Pinsker cr-algebra (maximal cr-algebra with zero entropy). 

Let us denote by £a the partition into ergodic component of the element a(a) 
and by £(W) the measurable hull of the partition into the leaves of the foliation 
W. Now let a be a non-zero element in the critical direction, W be the one-
dimensional stable foliation of a, W" be the remaining foliation and b G M2 be a 
regular (non-critical) element such that W is the stable foliation of the element 
a(b). Thus we have the following inequalities: 

(2.2.1) £a < £(W') = w(a(b)) = aW © W") < £(W). 
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2.3. x2, x3 and automorphisms of a solenoid. A very similar situation 
appears for commuting expanding maps of the circle. The basic example is the 
action of Z+ generated by multiplications by 2 and by 3 ( mod 1). The question 
about invariant measures of this actions was posed by Furstenberg in 1967 [F]; 
it was solved for measures with positive entropy by D. Rudolph, [R]. It was an 
attempt to understand Rudolph's result in a geometric fashion that led the second 
author to the consideration of the model on the three-torus described above. Now 
in order to prove that the only ergodic positive entropy invariant measure for the 
multiplications by 2 and by 3 is Lebesgue we pass to the natural extension for this 
action. The phase space for this natural extension is a solenoid, the dual group 
to the discrete group Z(l /2,1/3) . It is locally modeled on the product of R with 
the groups of 2-adic and 3-adic numbers. Thus while topologically the solenoid is 
one-dimensional, there are three Lyapunov exponents, one for the real direction, 
and two for the non-Archimedean ones. Since the multiplication by 2 is an isometry 
in the 3-adic norm and vice versa the critical lines in this case are the two axis 
and the line xlog2 + ylog3 = 0 which does not intersect the first quadrant. All 
the above arguments work in this case verbatim with the real foliation playing the 
role of W. The unique ergodicity of the flow of translations along the real direction 
follows form the construction of the solenoid. 

This argument of course extends to multiplications by p and q unless for some 
natural numbers k and /, pk = ql. 

2.4. Other types of rigidity. The models discussed in this section are also 
very convenient for demonstrating a other types of rigidity phenomena which appear 
in actions of higher rank abelian groups. 

The first type is rigidity of vector valued Hoelder and differentiable cocycles. 
Rigidity in these cases means that every cocycle from a given class is cohomologous 
to a constant coefficient cocycle, i.e. a homomorphism from the acting group to the 
vector space with the cohomology given by a transfer function from the same class or 
with moderate loss of regularity. See [KS1] for 1-cocycles over different iable actions, 
[KSch] for 1-cocycles over actions by automorphisms of compact groups and [KK] 
for higher-order cocycles. A nice survey which also discusses other types of cocycles, 
such as those with values with compact abelian groups as well as nonabelian groups 
is [NT]. 

Another type of rigidity is local differentiable rigidity: any smooth action close 
to a given action in C1 topology is differentiably conjugate (also maybe with a small 
loss of regularity) to the original action; in the continuous case up to an automor­
phism of Rk close to identity (see [KS2]). It is interesting to point that the proof 
of local differentiable rigidity involves a construction of a certain family of invariant 
geometric structures on certain invariant foliations of the perturbed action. In the 
simplest cases this structure is an affine connection. Then the structural stability 
implies existence of continuous conjugacy between the original and perturbed ac­
tion (up to a time change in the continuous case). The principal idea in the proof 
that the conjugacy must be smooth involves showing that it intertwines a standard 
structure on the leaves of an invariant foliation for the algebraic action with the 
corresponding structure of the perturbed one. These latter structure plays a role 
very similar to that of conditional measures in the setup of the present paper. 
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There are also global rigidity results which assume that an action has certain 
topological (e.g. homotopy type) and dynamical (i.e. Anosov) properties and assert 
conjugacy with a standard algebraic action [KL, MQ]. 

The forthcoming notes [K2] discuss all these types of rigidity primarily in the 
simplest setting of actions of Z2 by automorphisms of T3. 

3. Rigidity of invariant measures for actions by toral automorphisms 

3.1. The Main Theorem and its Corollaries. In this section we discuss 
the main results on the rigidity of invariant measures for higher rank abelian actions 
by toral automorphisms. Theorem 3.1 is a modified version of the main result of A. 
Katok and R. Spatzier for the case of Zfc action by toral automorphisms (Theorem 
5.1' of [KS4], which is in turn a modification of Theorem 5.1 of [KS3]). We give a 
complete self-contained proof of this theorem which is based on the original proof 
in [KS3] and [KS4]. 

The modification reflects the new version of Lemma 5.8' from [KS4] (see 
Lemma 3.11). The proof of Lemma 5.8' in [KS4] contains a gap since the ergodic-
ity of the action may not imply that subspaces Sx are parallel. This in particular 
forces a slight modification in the formulation of the result, namely splitting of the 
measure into finitely many components. We give a more detailed proof of Lemma 
3.2 (Lemma 5.4 from [KS3]) and a more elementary proof of Lemma 3.4 (Lemma 
5.6 from [KS3]). Lemma 3.6 and Lemma 3.8 are similar to Lemma 5.9 and Lemma 
5.10 in [KS3]. and the proofs employ the idea of the proofs in [KS3]. While the 
latter lemmas are correct their proofs in [KS3] lack some essential details. We give 
new arguments to complete the proofs. 

Let a and ex be actions of Zfc by toral automorphisms and let ex be an algebraic 
factor of ex. Then ex is called a rank-one factor of a if ex (7Lk) has a subgroup of 
finite index which consists of powers of a single map. 

For an action a of Zk by automorphisms a torus the following two conditions 
are equivalent [S]. 

(TV) : The action a contains a subgroup /?, isomorphic to Z2, which consists of 
ergodic automorphisms. 

(IV) : The action a does not possess non-trivial rank one algebraic factors. 

THEOREM 3.1. Let a be an Wk-action with k > 2 induced from Zk action 
by automorphisms of T m satisfying condition (IV). Assume that \i is an ergodic 
invariant measure for a such that there are generic singular elements a i , . . . , a& 
and a regular element b EWk such that 

C I : : E^ = J2i(Eai ^ ^b) (w^ere the sum need not be direct) and 
C2: : £a, < £ « nE~). 

Then either the invariant measure fi^rn for the Zk action by automorphisms of 
Tm has zero entropy for all elements of the action or it decomposes 
^( / i i + ...+/iiv); where measures Hi, i = l,...,iV, are invariant under a (T) for some 
finite index subgroup F C Zfc. The actions (a(r ) , /^) are algebraically isomorphic 
by the toral automorphisms from cx(7Lk). Each fii, i = 1,...,7V7 is an extension of 
a zero entropy measure in an algebraic factor for cx(T) of smaller dimension with 
Haar conditional measures in the fibers. 
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Condition C 2 (which of course depends on C I while the latter does not mean 
much by itself) is a generalization of the condition {£) form Section 2.1. It will play 
a similar role in the proof. There are various situations where these conditions can 
be established. It is trivially satisfied if every one-parameter subgroup of the action 
a is ergodic, or, equivalently if the original Xk action by toral automorphisms is 
weakly mixing. 

C O R O L L A R Y 3.1. Let a be a Zk-action with k > 2 by automorphisms of a torus 
satisfying condition (72.). Then any weakly mixing invariant measure for a is an 
extension of a zero entropy measure in an algebraic factor with Haar conditional 
measures in the fibers. 

The following corollary of Theorem 3.1 will be used in Section 4. 

T H E O R E M 3.2. Let a be an action of 7? by ergodic toral automorphisms and 
let fji be an a-invariant weakly mixing measure such that for some m G Z2

7 a(m) 
is a K-automorphism. Then /i is a translate of Haar measure on an a-invariant 
rational subtorus. 

P R O O F . By Theorem 3.1 the measure /i is an extension of a zero entropy mea­
sure for an algebraic factor of smaller dimension with Haar conditional measures 
in the fiber. Since a contains a ^ -au tomorph i sm it does not have nontrivial zero 
entropy factors. Hence the factor in question is the action on a single point and \i 
itself is a Haar measure on a rational subtorus. • 

In the special case considered in Section 2.2 the ergodicity assumption [£) for 
the critical direction was deduced from ergodicity. The deduction was based on the 
interlacing of stable and unstable foliations which allowed to produce (2.2.1). Now 
we will show how a similar argument allows to verify conditions of Theorem 3.1 in 
much greater generality. 

T H E O R E M 3.3. Any ergodic invariant measure \i for a totally nonsymplectic 
Anosov action of Zk by automorphisms of a torus either has zero entropy for all 
elements of the action or decomposes as \x — ^ ( / i i + ... -f J^N), where measures fa, 
i = 1,..., N, are invariant under a(T) for some finite index subgroup T C Zfc. The 
actions ( a ( r ) , / i ? ) are algebraically isomorphic by the toral automorphisms from 
a(Zk). Each \i%1 i = 1,...,7V, is an extension of a zero entropy measure in an 
algebraic factor for a(T) of smaller dimension with Haar conditional measures in 
the fibers. 

P R O O F . First for any Anosov TNS action of Zfc, k > 2, since for k — 1 any 
positive exponent is negatively proportional to any negative exponent. Thus we 
need to check conditions C I , C 2 . For tha t it is obviously sufficient to show tha t 
for any generic singular element a eRk, £a < £(E®). 

For such an element a a single Lyapunov exponent vanishes and the correspond­
ing Lyapunov distribution coincides with E®. Take a regular element b nearby for 
which the corresponding Lyapunov exponent is positive and all other exponents 
have the same signs as for a. Thus E^ = E+ 0 E® and E^ = E~. BirkhofT aver­
ages with respect to a(a) of any continuous function are constant on the leaves of 
£a. Since such averages generate the algebra of a(a) invariant functions we conclude 
tha t £a < £(E~). On the other hand both and both £(E^~) and £,(E^) coincide 
with the Pinsker algebra 7r(a(b)). Thus we conclude 
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a 
COROLLARY 3.2. v4n?/ ergodic invariant measure for an irreducible totally non-

symplectic Anosov action ofXk by automorphisms of a torus either has zero entropy 
for all elements of the action or is Lebesgue measure on the torus. 

3.2. Scheme of the Proof of Theorem 3.1. Step 1. Let us consider one of 
the generic singular elements a% from the statement of Theorem 3.1 and a Lyapunov 
exponent A such that A(aJ = 0. We denote by F the invariant foliation W*r H W^ H 
Wx where Wx is the Lyapunov foliation corresponding to A. 

In Section 3.3 we use Lemmas 3.2, 3.3, 3.4 to establish the following dichotomy. 

LEMMA 3.1. For any foliation F described above either 

(1) The conditional measure ^ is atomic for fi-a.e. x, or 
(2) The conditional measure n^ is a Haar measure on an affine subspace Sx 

of positive dimension for (i-a. e. x. 

Step 2. If for all foliations F described in Step 1 the first alternative of Lemma 
3.1 takes place then we prove in Section 3.4 that the conditional measures on the 
foliation Wfe~ are atomic. By Proposition 1.1 this implies that the entropy of a(b) is 
equal to 0. Since the stable foliation is the same for all elements in the same Weyl 
chamber we see that the entropy is 0 for all elements in the same Weyl chamber 
as b. Since the entropies of a(b) and a(—b) are the same we conclude the entropy 
is 0 for all elements in the Weyl chamber of 6. Then it follows from sublinearity of 
entropy [H] that all elements of the action have 0 entropy. 

This completes the proof of Theorem 3.1 in the case when the first alternative 
of Lemma 3.1 takes place for all foliations F described in Step 1. 

Step 3. Suppose that for some foliation F described in Step 1 the second 
alternative of Lemma 3.1 takes place, i.e. the conditional measure /i^ is a Haar 
measure on an affine subspace Sx for /i-a.e. x. We note that by ergodicity of the 
action the subspaces Sx have the same dimension for /i-a.e. x. We may assume 
that this dimension is positive. Then Lemma 3.11 shows that the measure on the 
torus decomposes as fijm — ̂ ( / i i + ... + /ijv), where measures /x̂ , i — 1,..., TV, are 
invariant under a(Y) for some finite index subgroup Y C 7Lk. The actions (a(T), jii) 
are algebraically isomorphic and each /^, i = 1,...,7V, is an extension of a zero 
entropy measure in an algebraic factor of smaller dimension for a(Y) with Haar 
conditional measures in the fibers. We restrict the action a to the finite index 
subgroup r and consider invariant measure /ii. If the factor-measure has zero 
entropy for all elements of this action we are done. Otherwise we may assume that 
in the factor some element still has positive entropy and repeat the argument. Note 
that condition (TV) is inherited by any algebraic factor as well as conditions C I , 
C2. We will arrive at a factor of the factor and so on. Since at every step the 
dimension of the factor drops this process has to stop, thus producing a factor with 
zero entropy. It is also clear by induction that the conditionals are in fact Haar 
measures on the fibers. 

Notice that in the case of Z2 action on T3 considered in Section 2.2 Steps 2 
and 3 are not needed. 
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3.3. Proof of the Lemma 3.1. In this section we prove the following three 
lemmas from [KS3] which establish the dichotomy of Lemma 3.1 from Section 3.2. 
Lemma 3.2 generalizes the argument from the Step 1 in Section 2.2.2, and Lemma 
3.4 the argument from Step 2 in the same section. 

The general setup for these lemmas is as follows. Suppose that a G Rk is a 
generic singular element and F C W£ is some a (a)-invariant subfoliation of W^ 
with leaves of dimension d. Denote by B[(x) the closed unit ball in F(x) about x 
with respect to the flat metric. Denote by /if the system of conditional measures 
on F normalized by the requirement fix(B[(x)) = 1 for all x in the support of /i 
and by Gx the subgroup of isometries of F(x) which preserve /if up to a scalar 
multiple. 

To simplify the notation from now on we will write a instead of a(a) when this 
does not cause any confusion. 

Recall that we denote by £a the partition into ergodic components of element 
a and by £(F) the measurable hull of F. 

LEMMA 3.2. f[KS3], Lemma 5.4) Suppose that £a < £(F). Then for \i-a.e. 
x, Gx is closed and the support of /if is the orbit of x under the group Gx . 
Furthermore, </>*/if = /JL^X for any <p G GX. 

PROOF. TO prove the last statement of the lemma we note that the normal­
izations of the conditional measures </>*/xf and /j,y coincide since 0*/if (f?f (?/) — 
/if (£?f (x)) = 1 due to the fact that <f> is an isometry. 

Since Gx maps the support of /if to itself we only need to show that Gx is 
closed and acts transitively on the support of /if. 

We first show that Gx is closed. Let {<fin} C Gx be a sequence of isometries 
converging to an isometry <j). We need to show that 0 G Gx. Let yn = (f)n(x) 
and y = (/>(x). We can choose a radius r such that the boundaries of balls B^(x) 
and B^(y) carry no conditional measure. Let us denote by /ifr the conditional 
measure normalized by /if,r(I2f (z)) — 1. Since the balls B^(yn) converge to B^(y) 
we conclude that fiy^ converge to /i^ ' r in weak* topology. Since (pn G Gx we see 
that (0n)*/if'r = fiy^ since their normalizations coincide. Since (</>)*/if,r is the 
weak* limit of ((/>n)*/if'r it follows that (</>)*/if'r = A^,r- Since /i^' r is a scalar 
multiple of /if,r, we conclude that (j> belongs to Gx. 

It remains to show that for /i-a.e. x and /if-a.e. y G F(x) there exists an 
isometry </> of F{x) such that y = (j)(x) and fiy = 0*/if. Since GX is closed and 
any set of full measure is dense in the support of /if, it would follow that Gx is, in 
fact, transitive on the support of /if. 

Let Xi be the set of all x such that the ergodic component Ex of a passing 
through x is well-defined and contains F(x) (up to a set of /if-measure 0). By the 
assumption on a, the set X\ has full /i-measure. Let \ix be the induced measure on 
Ex. Recall that a acts isometrically on F(x). 

Let us fix R > 0 and introduce the following notation 
F __ F\ 

^x,R — ^x IBgO) ' 

We can canonically identify each ball B^(x) with the standard ball BR in Md i m F 

of radius R. Thus we can consider the system of measures /if R as a measurable 
function from M to the weak* compact set of Borel probability measures on BR 
(compare with the proof of (T), step 1 in Section 2.2). By Luzin's theorem, we can 
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take an increasing sequence of closed sets Ki contained in the support of \i such 
that 

oo 

(1) n(K) = 1, where K = (J K% 

(2) [ixR depends continuously on x G Ki with respect to the weak* topology. 

Set X2 = Xi C\K. Since the transformation induced by a on X2 PEX is ergodic, 
the transformation induced by a on X\ D Ki n Ex is also ergodic for any i. Hence 
the set X3, which consists of points x G X2 whose orbit {an x}nez is dense in 
Xi D Ki n E^ for all z, has full /i-measure. 

Let X G I 3 and y G X3 fl F(x). Then x, y G Xi n Ki H Ex for some i. Hence 
there exists a sequence n^ —> 00 such that the points ^ = ank x E Xi Pi Ki n Ex 

converge to y. Since Hx R depends continuously on x G Ki with respect to the 
weak* topology the measures fiy R weak* converge to the measure /^y^R- Let us 
denote the isometry ank\F^ by </>&. We note that {4>k)*/J>x R = ^yk^R s m c e they 
are conditional measures on the same leaf F(yk) and their normalizations coincide. 
Taking a subsequence if necessary, we may assume that <pk converge uniformly on 
compact sets to some isometry <f> of F(x) with 4>(x) = y. Since {<fi)*Hx R

 ls t n e 

weak* limit of ((/>k)*l^x R ^ f ° n o w s that {0)*HX R = Hy,R-
We conclude that for any R > 0 there exists a set X3 of full /1 measure such 

that for any X G I 3 and y G X3 Pi F(x) there exists an isometry <fi of F(x) with the 
properties (j){x) = y and fiyR = </>* ^ R. 

We can now take a sequence B4 —> 00 arid choose a set X of full /i-measure such 
that for any x G X , y G X P F(x) and any i there exists an isometry (j)i of F(x) 
with the property Vy Ri — (0i)* I^X R ^ Taking a converging subsequence we obtain 
that for any x G X and y G X P F(x) there exists an isometry 0 of F(x) with the 
properties cj){x) = y and fiy = (j>* /J,X . This completes the proof of the lemma since 
we may assume that the set X is chosen so that for x G X the set X P F{x) has 
full fi^-measure. • 

LEMMA 3.3. fjKSS], Lemma 5.5) In addition to the assumptions in Lemma 3.2, 
let F be contained in the intersection of W* with a Lyapunov subspace for a non­
zero Lyapunov exponent X. Then for \i-a.e. x, the support Sx of \i^. is an affine 
subspace of F(x) whose dimension is constant for almost every x.. 

PROOF. By Lemma 3.2, Sx is the orbit of a closed group of isometries. There­
fore Sx is a submanifold, possibly disconnected. Note that the maximal principal 
curvature of Sx is constant along Sx. Let n(x) denote this constant. 

Let b be any element such that X(b) < 0. Note that b maps Sx to Stx- Iterates 
of b exponentially contract the fibers of F. In particular, since the exponential 
contractions in all directions inside F are the same, any curve with positive prin­
cipal curvature will be mapped to curves with exponentially increasing principal 
curvatures. Hence K(bnx) goes to infinity for /i-a.e. x unless K(X) = 0. This is 
impossible by Poincare recurrence. Thus K(X) = 0, and hence the support of fi^ is 
a union of non-intersecting affine subspaces. 

Let us now show that the support is connected. Suppose to the contrary that 
the support is a union UAi of at least two affine subspaces Ai. Let dx denote the 
minimum of the distances from x to any Ai which does not contain x. Since the 
support is a closed subset, dx > 0 for all x. Note that d^ x —» 0 as n —• 00. This 
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is again a contradiction to Poincare recurrence. The dimension of Sx is a-invariant 
and hence is constant due to the ergodicity of the action a. • 

L E M M A 3.4. f{KS3], Lemma 5.6) Under the assumptions of Lemma 3.3, \iF is 
Haar measure on Sx. 

P R O O F . By Lemma 3.2 the group Gx of isometries of F(x) which map (iF to 
its scalar multiple acts transitively on the support Sx of the conditional measure 
of \iF. By Lemma 3.3, Sx is an affine space. For any x and y G Sx C F(x) let 
us define the scaling coefficient cx(y) by the equality (j)fiF = cx(y){iF, where fiF 

is the conditional measure on F(x) = F(y) and 0 G Gx is an isometry such tha t 
<fi(x) = y. In other words cx(y) can be calculated as 

4>^F{A) yF(4>-lA) yF(A) 
CxW nF{A) „F(A) ^(4>A) 

for any set A of positive conditional measure. We note tha t since the conditional 
measures are defined up to a scalar multiple it is clear tha t the definition does not 
depend on a particular choice of fiF. Since the image of the unit ball cj)(B[(x)) 
is the same for all isometries <fi G Gx such tha t <p(x) = y we conclude tha t the 
definition does not depend on a particular choice of (j) either. 

Since we can take the test set A such tha t the conditional measure of the relative 
(to F(x)) boundary of <\>A is equal to zero, we conclude tha t tha t for a fixed x the 
coefficient cx(y) depends continuously on y. 

We see tha t either for /x — a.e. x cx(y) — 1 for all y G Sx, hence jiF is Haar 
on Sx, or there exists a set X of positive measure such tha t cx(y) is not identically 
equal to 1 for x G X. In the latter case for some e > 0 we can define a finite positive 
measurable function 

fe(x) = inf{r : 3 y G Sx s.t. d(x, y) < r and \cx(y) - 1| > e) 

on some subset Y C X of positive /i-measure. By measurability there exists N and 
a set Z of positive measure on which f€ takes values in the interval (1/iV, N). We 
will show tha t 

(3.3.1) fe(bnx) ^ 0 as n -^ oo 

uniformly on Z for an element b which contracts foliation F. This will prove the 
lemma since it contradicts to the recurrence of Z under b. 

We will prove now tha t 

(3.3.2) cx(y) = chx(by) 

for /i-a.e. x and y G Sx. Since the iterates of b exponentially contract the leaves 
of F this invariance property implies tha t fe(b

nx) < C\nfe(x), for some C,A > 0, 
hence (3.3.2) implies (3.3.1) 

To prove (3.3.2) we use Lemma 3.2. For any y G Sx there exists an isometry 
(j) of F(x) with the properties <j)(x) = y and fiF = ((/>)* \iF. Since such (j) can be 
obtained as a limit of a sequence of some powers of a restricted to F(x) we may 
assume tha t it commutes with b in the following sense. The map i/; = b o <fi o b~x is 
an isometry of F(bx). Thus we have bocj) = i/job. We note tha t since b preserves the 
family of conditional measures (up to a scalar multiple) ip preserves the conditional 
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measures on F(bx) up to a scalar multiple. Hence for any set A C F(x) of positive 
conditional measure we have 

fjLF(A) = (b^F)(bA) 
Cx[y) nF{(j)A) {b^F){bo(pA) 

(b^F)(bA) = (K»F)(bA) = 

(MF)W°M) (h»r)MbA)) bx[V)' 
n 

3.4. The Case of Atomic Conditional Measures. In this section we con­
sider the case when for all foliations F, described in Step 1 of the scheme of the 
proof, the first alternative of Lemma 3.1 takes place, i.e. the conditional measures 
are atomic. We use Lemmas 3.5, 3.6, and 3.8 to show that in this case the condi­
tional measures on the foliation W^ are atomic. This by Proposition 1.1 implies 
that the entropy of a(b) is equal to 0 and allows us to proceed as in Step 2 of the 
scheme of the proof. 

REMARK 3.1. This part of the argument is not needed in the case considered 
in Section 2.2 since the foliation F in that case coincides with the complete stable 
foliation of some regular element b and hence zero entropy follows right away. 

As in Step 1 of the scheme of the proof of Theorem 3.1 we consider one of the 
generic singular elements ai from the statement of Theorem 3.1 and a Lyapunov 
exponent A such that A(a^) = 0. Let us denote by F the invariant foliation W£. n 
Wb~~ PI Wx where Wx is the Lyapunov foliation corresponding to A. We know that 
the conditional measure \iF is atomic for /x-a.e. x. 

First we use Lemma 3.5 to conclude that the conditional measures on the 
foliation W^ D W^~ are atomic for each a .̂ We note that Lemma 3.2 implies that 
the conditional measures on the whole foliation W^ D W^ are supported on smooth 
submanifold of the leaves. 

Once we know that the conditional measures on foliations W^ D W6~ for all i are 
atomic Lemma 3.6 shows that the conditional measures on all foliations W®. f] Wb~ 
are also atomic. Then to show that the conditional measures on the whole W^ 
are atomic we use the inductive process as in the end of the outline of the proof of 
Theorem 5.1 in [KS3]. 

We restrict the action to a 2-plane which contains b and intersects all the 
Lyapunov hyperplanes in generic lines. Then we can replace each az by an element 
ct in the intersection of the 2-plane with the unique Lyapunov hyperplane that 
contains a .̂ Since the elements ai and c% have the same center foliation for each i 
we see that 

K = £ « n £6") = £ « n E-) 
i i 

and the conditional measures on all W®. H W6~ are atomic. We can now reorder the 
elements Q in such a way that the Lyapunov exponent that correspond to E®. (^E^ 
is negative on cz for each j < i. Starting with W® D W^ we apply Lemma 3.8 
inductively to prove that the conditional measures are atomic on (W® © W<? )nW6

- , 
on (W^ 0 W°2 0 W®3) H Wb~, and so on until we exhaust the whole W^. 

To complete the proof that the conditional measures on the foliation W^~ are 
atomic we need to prove Lemmas 3.5, 3.6, and 3.8 below. 
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The proof of Lemma 3.5 follows the proof of Lemma 5.8 in [KS3]. Lemma 
3.6 is identical to Lemma 5.9 in [KS3] and Lemma 3.8 is a slight modification of 
Lemma 5.10 from [KS3]. 

Notice that any a-invariant subfoliation of W* splits into its intersections with 
Lyapunov foliations. 

LEMMA 3.5. Let F be an invariant subfoliation of W* n Wb~ and let F = 
^ A ( F n Wx) be the splitting into its intersections with the Lyapunov foliations. 
Assume that the conditional measures on all foliations F 0 Wx are atomic and the 
support Sx of measure ji^ is a smooth submanifold of F(x). Then the conditional 
measures on F are also atomic. 

PROOF. The support Sx of measure \i^, is a smooth submanifold which in­
tersects every F P\ Wx in at most one point. Let A be the Lyapunov exponent 
smallest on b. Let D be the distribution of tangent spaces of Sx. It is measur­
able, and 6-invariant and C°° on F(x). Since D cannot intersect the component 
in the W^-direction in a subspace of positive dimension, D must be tangent to the 
sum Yla^x Wfi by 6-invariance. By taking the Lyapunov exponents inductively in 
increasing order, we see that D is trivial and /x^ are atomic. • 

LEMMA 3.6. Let a <E~Rk be a generic singular element and b £Rk be a regular 
element. If the conditional measures on the foliation W* D W^ are atomic, then 
the conditional measures on the foliation W® D W^ are also atomic. 

P R O O F . Let us introduce the following notations for the proof of the lemma: 

E = E°anE^ , E^EinE-. 

E1 is the subspace of E spanned by the isometric directions of a, i.e. the eigendi-
rections for real eigenvalues and invariant 2-planes for pairs of complex eigenvalues. 
Note that E and E1 are both a and b invariant. The corresponding foliations will 
be denoted by 

F = W°D W6" and F1 = W* n W^ 
correspondingly. 

We will prove the lemma by showing inductively that the conditional measures 
are atomic on the foliations that correspond to larger and larger subfoliations of F , 
until we exhaust the whole F. 

The proof consists of two parts. One part is the basic inductive step which 
shows that if we add a certain one dimensional foliation to the previously con­
structed foliation than the conditional measures will be again atomic. This part is 
established in Lemma 3.7. The other part is the inductive process itself which we 
explain below. In this part we choose the one dimensional directions and the proper 
ordering of them to ensure our ability to make the inductive step. This choice is 
based on the relation between the algebraic properties of elements a and b as linear 
transformations of E. 

The a and b invariant subspace E splits as the direct sum of its intersections 
with the root subspaces (the generalized eigenspaces) of a: 

E= 0 Ker(a-X)m. 
XeSp(a) 

Each term of this direct sum is b invariant since b commutes with a. Hence it 
can be split into the direct sum of root subspaces for the restriction of b. Thus we 
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obtain the splitting E — @ Ui which is invariant under both elements a and b. Let 
us denote by Â  (correspondingly v^) the eigenvalue of a (correspondingly b) on the 
subspace Ui. We have that |A |̂ = 1 and \vi\ < 1 for all i. Each Ui is filtered as 

Ui fl E1 = V? C ... C Vf* = Ui , where Vt
k = Ker(a - A ^ ^ 1 n U% 

and (di + 1) is the maximal dimension of Jordan blocks of a on Ui. Note that since 
b commutes with a it leaves each subspace V{

k invariant. So we see that each Vk 

is both a and b invariant. We assign the "weight" |z^|J to each subspace V?, we 
assign 0 weight to subspace V®. Let us enumerate the weights in the increasing 
order: 0 = WQ < w\ < ... < Wj0. We denote by Ej the direct sum of all Vk whose 
weights equal to Wj. Now E filtrates as 

E = EQ C ... C EJ0 = E. 

Even though the subspaces Vk that correspond to the complex eigenvalues are 
defined only over C all subspaces Ej are defined over E. This follows from the 
structure of the Jordan normal form for a over reals. We note again that each Ej 
is a and b invariant. 

We will show inductively that the conditional measures on the foliations corre­
sponding to Ej are atomic. 

Let us fix j and assume inductively that the conditional measures on the folia­
tion corresponding to Ej-i are atomic. We will prove that the conditional measures 
on the foliation corresponding to Ej are also atomic by showing that the conditional 
measures are atomic on the foliations corresponding to larger and larger subspaces 
of Ej. The dimension of the subspace will be increased by one at each step until 
we exhaust the whole Ej. 

When we would like to add one direction in some Ui for which Â  or Vi is not 
real, instead of elements a and b we will use their suitable powers as% and bti s.t. 
X^1 = 1 and 0 < v1^ < 1. By taking the square of the element, if necessary, we 
may assume that there exist real logarithms and hence real powers of a and b. 
The ergodicity of these elements is not needed since we only will be using the fact 
that they preserve the measure. Note that the splitting E = 0 Ui and nitrations 
Ui fl E1 = V® C ... C Vf* = Ui are the same for all such powers. Hence the order 
of weights and filtration E1 = E$ C ... C EjQ = E are also the same. 

Ej splits into its intersections with Ui as Ej = 0 V ^ l. Then the intersections 
of Ej-i with Ui are either Vki or Vk%~1. We will consider only the intersections of 
Ej with Ui of the second type since we do not need to add any directions along the 
other UiS. The operator (bti — ifr) is nilpotent on Vki/Vki~x since it is nilpotent 
on Ui. Let d^,...,d^p. be the dimensions of the cyclic subspaces of (bfi — v\l) 
on Vi

 i jVi
 %~x and e^i, ...,e^p. £ Vi

 i be some representatives of their generators. 
Then the vectors 

4 p - ( ^ - ^ ) < _ ( / + 1 ) ^ p for p = l , . . . , P , and Z = 0 , . . . , d ? - 1 

form a basis of V^% relative to Vi
 i~1. Finally we have 

£; = £i-i©000<<P> 
i p=l 1=0 
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We will add the directions < e\ > to Ej-i one by one in the order of increasing 

of the value of —-• The rest of the proof describes the procedure of adding. 

Let D =< e,-° „ > be the new direction to be added at this step. We introduce 
the following notations for this step: /c0 := klQ1 e\ := e\Q,PQ for I = 0,..., IQ, A := aSlo 
and B := bllo. The eigenvalues of A and B on Ui0 are correspondingly 1 and i/, 
where 0 < v < 1. The vectors ef := (A - l)k°~~kei for / = 0,..., /0 and k = 0,..., /c0 

form a Jordan normal basis for A on some subspace V C Ui which will be of 
particular interest for this step. Note tha t the subspaces UiQ and V are invariant 
for A and B as subspaces over R. 

Let us denote by Di the A and B invariant subspace which is the sum of Ej-\ 
and previously added directions. We denote the corresponding foliation by F\. We 
assume inductively tha t the conditional measures on the foliation F\ are atomic. 
It is easy to see tha t the subspace D<i — D\ 0 D is also defined over R and both A 
and B invariant. Let us denote the corresponding foliation by F^. 

To complete the proof Lemma 3.6 it remains to prove the following lemma 
which shows tha t the conditional measures on the foliation F2 are atomic. 

L E M M A 3.7. If the conditional measures on the foliation F\ are atomic then 
the conditional measures on the foliation F2 are also atomic. 

P R O O F . Let us consider a measurable partit ion, subordinate to F2, which con­
sists "mainly" of small "rectangles" of the same size with sides parallel to the basis 
directions and has the following property. The measure of the set Int1 is at least 
0.99 for some 7 > 0, where Int1 consists of points inside rectangles on the dis­
tance at least 7 from the relative (to the leaf of F2) boundary of the rectangle tha t 
contains the point. 

By induction hypothesis there exists a set of full measure which intersects any 
fiber of F\ in at most one point. Approximating this set from inside we can find a 
compact set K with the same property. We would like to consider only "good" part 
of the measure /x, so we introduce a new measure fix by Mx(-) — M(- H X ) , where 
X — K D Int1 with n{X) > 0.98. Let us consider the system of the conditional 
measures of \±x w.r.t. the measurable parti t ion into the rectangles (the remaining 
elements have fix measure 0). These measures will be referred to as the conditional 
measures of rectangles. We will regard each rectangle as a direct product of its 
vertical (F\) and horizontal (D) directions. We observe the following dichotomy: 

(1) Either for every rectangle, in a set of positive measure, at least 1/3 of its 
conditional measure is concentrated on a single vertical leaf, hence at one 
point, 

(2) Or there exists a lower bound d > 0 for the width of a vertical strip of a 
rectangle tha t can carry at least 1/3 of its conditional measure, for any 
rectangle in a set Y consisting of whole rectangles with fix(X) > 0-97 

In the first case the existence of atoms for the conditional measures of rect­
angles implies the existence of atoms for the conditional measures on foliation F2. 
Since this foliation is contracted by b the existence of atoms forces the conditional 
measures on F2 be atomic. This can be seen as in the proof of Proposition 4.1 in 
[KS3]. If x is an atom of the conditional measure then there exists a small neigh­
borhood U of x in the leaf F 2 (^) such tha t /if2(£7 — {x}) < e/if2({x}). Pushing 
fi^2 backward and using Poincare recurrence, we see tha t for a typical x, /if2 is 
concentrated at x. 

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



INVARIANT MEASURES F O R ACTIONS OF ABELIAN G R O U P S 615 

In the latter case each rectangle in Y can be split into three vertical strips 
of width at least d so tha t both the left and the right ones have the conditional 
measure at least 1/3. We again may assume tha t the conditional measures do not 
have atoms since otherwise we could argue as in the first case. 

The intersection of the compact set K with any rectangle is a graph of a 
continuous (not necessarily everywhere defined) function from the vertical direction 
to horizontal. Moreover the family of these functions is equicontinuous. Let us take 
same e and find 8 given by the equicontinuity. Combining contraction provided by 
B and shear provided by A we will find such an element AmBn tha t the image of 
any rectangle from Y has the following properties: 

(1) The image is <5-narrow in the horizontal direction 
(2) The distance along the vertical direction between the images of the right 

and the left strips is at least e 
(3) The image is sufficiently small (its diameter less than 7) so tha t it can not 

intersect 7-interiors of two different rectangles simultaneously. 

Under these conditions the images of the right and the left strips can not 
intersect Z = X nY simultaneously. But this implies tha t jix^A^B^Z) n Z) < 
^Hx{Z) which is impossible since \i(Z) — Hx{Z) = Hx(Y) > 0.97. To prove tha t 
the conditional measures on F2 are atomic it remains to show tha t such an element 
AmBn e x i s t s > 

To satisfy the second condition we obtain the required shear along the direction 
of the eigenvector e§. On subspace V element B provides uniform contraction by 
factor v and possibly some shear. Since no shear accumulates in V along D = < 
ei0 > direction the size along D direction of the image under Bn of any rectangle is 
un s, where s is the size of the original rectangle. Since with respect to B vector ei0 

has height IQ over eo the distance between the images under Bn of the right and left 
strips along eo direction is at least conl°und for some small CQ > 0 and sufficiently 
large n. After this we apply Am, where m will be exponential in n. We see tha t the 
size along D direction is still vn s. Since vector e0 has height fco (with respect to 
A) the leading term of the distance between the images of the right and left strips 
under AmBn along the direction of the eigenvector e[] is cimkonl°vnd. Indeed, the 
other terms with the same power of m have smaller power of n while terms with 
smaller power of m are negligible since m will be exponential in n. We see tha t the 
other terms are bounded by C2mkonl°~1uns, where C2 is large (depending only on 
the structure of the subspace V for A and B), so the distance between the images 
of the right and left strips along e{j direction is at least c3m

konlound for sufficiently 
large m and n and some small C3 (depending only on &o and IQ). Similarly, the size 
of the image along all V directions can be estimated from above by C4 mkonl°vns. 

We would like to show tha t we can control the size of the image along other 
directions in E\ as effectively as along the V directions. For each i the intersection 
D\ n Ul splits further into A and B invariant real subspaces tha t can be constructed 
similarly to V s tart ing from some e• p G D\ such tha t e ^ 1 ^ D\. 

Let us consider any one of these A and B invariant real subspaces and denote 
it by V C D\ D Ui. As above, we can estimate the size of the image along V by 
C^mk%n\u^s1 where v* is the corresponding eigenvalue of b. 

We will now specify the choice of the element AmBn. First we note tha t the 
size of the image of any rectangle along D direction is vn s independently on m. 
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Hence the condition (1) will be automatically satisfied once n is chosen sufficiently 
large. 

We observe that the ratio of the desired shear and the size along V directions 
is bounded. To make the shear and the size along V directions bounded for large 

. i_ 

m and n we take m and n so that m ~ (n°vn) ko. In this case we will obtain the 
following estimate of the size of image along the subspace V: 

l kin l 

We observe that this estimate is also bounded since v*% — v ko and -r- < t*- due to 
ki k0 

the the ordering of weights and the order of adding directions inside Ej. Note that 
if V is constructed starting from some basis vector in Ej-i then v*1 < uko due to 
the ordering of weights and the estimate will be in fact exponentially small. 

We conclude that by taking m and n large and so that m ~ (nl°vn) ko we 
can satisfy the condition (1) for any 5 while producing the shear bounded below 
and the size of the images of rectangles bounded above. Then given the desired 
bound 7 on the size of the image we can apply a bounded number of iterates of b 
to adjust the above estimate for the size to be 7. After that we choose e smaller 
than the adjusted lower bound for the shear. For this e there exists some 5 by the 
equicontinuity. The above considerations show that we can now take n sufficiently 
large and m ~ (nl°iyn)~'ko to satisfy all three conditions. • 

This finishes the proof of Lemma 3.6. • 

LEMMA 3.8. Let W be an invariant subfoliation ofW® and F be an invariant 
subfoliation of W~ for some element a. Suppose that F © W C W6~ for some 
element b and that the conditional measures of ji on both foliations F and W are 
atomic. Then the conditional measures on the foliation F © W are also atomic. 

PROOF. We will reduce the lemma to its special case, Lemma 3.9. the reduction 
goes as follows. Denote W1 — WC\W^. Then Lemma 3.9 shows that the conditional 
measures on the foliation F ® W1 are also atomic. 

After that we add root directions of W as in Lemma 3.6 and prove that the 
conditional measures 011 F (&W are also atomic. The only difference is that in the 
basic step, Lemma 3.7, we need to control the size of the images of rectangles not 
only along W1 and previously added root directions but also along F directions. 
But such control is trivial since by the conditions of the lemma F is contracted by 
both b and a. 

LEMMA 3.9. Let W be an invariant subfoliation of W* and F be an invariant 
subfoliation of W~ for some element a. Suppose that F © W C Wfe~ for some 
element b and that the conditional measures of fi on both foliations F and W are 
atomic. Then the conditional measures on the foliation F © W are also atomic. 

PROOF. Similar to Lemma 3.6 we prove this lemma inductively by adding one 
dimensional subfoliations of W to the foliation F one until we exhaust the whole 
F © W. Lemma 3.10 shows that on each step of this process we obtain a foliation 
with atomic conditional measures. 

Let us consider the Jordan normal form of b on the subspace that corresponds 
to foliation W. This subspace splits over C into the sum (J) Ui of root subspaces of 
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b. Each Ui is an eigenspace of a corresponding to some eigenvalue Xx with |A^| = 1. 
We denote by Vi the corresponding eigenvalue of b. 

In order to add a one dimensional direction inside some specific U% for which 
Xi or vi is complex we replace elements a and b by their proper powers aSl and bt% 

to make the corresponding eigenvalues real: \s
%

1 — 1 and 0 < v\% < 1. This allows 
us to consider Ui as a subspace over R. 

Unlike Lemma 3.6, for this proof we do not need to follow any particular order 
oLadding. We need only to make sure tha t when we add a new direction in some 
Ut we again obtain a subspace which is both a and b invariant and defined over R. 
The desired partial ordering of directions can be obtained by fixing some Jordan 
normal basis for the real operator bti on Ui. 

The next lemma proves the inductive step and completes the proof of Lemma 
a.9. 

L E M M A 3.10. Let Fi and F2 be invariant subfoliation ofW^ and F be an invari­
ant subfoliation of W~ for some element a. Suppose that F2 is one-dimensional, 
(F 0 F i 0 JF2) C W6

_ for sonae element b, and that the conditional measures of fi 
on both foliations F\ 0 F2 and F 0 F\ are atomic. Then the conditional measures 
on the foliation F 0 F\ 0 F2 are also atomic. 

PROOF. Since the conditional measures on the foliations F\ 0 F2 and F 0 F\ 
are atomic we can find a set of full measure and its compact subset K of measure 
at least 0.99 which intersect any leaf of the foliations F\ 0 F 2 and F © F i in at most 
one point. 

Consider a measurable partit ion, subordinate to F 0 F\ 0 F2 , which consists 
"mainly" of small "rectangles" of the same size with sides parallel to the foliations 
F , F\ and F2 and has the following property: the measure of the set Int1 is at least 
0.99 for some 7 > 0, where Int1 consists of points inside rectangles on the distance 
at least 7 from the relative (to the leaf of F 0 F\ 0 F2) boundary of the rectangle 
tha t contains the point. 

We would like to consider only "good" part of the measure /x, so we introduce 
a new measure fix by fix(-) — M- H X), where X = K H Int1 with fi{X) > 0.98. 
Let us consider the system of the conditional measures of fix w.r.t. the measurable 
parti t ion into the rectangles (the remaining elements have fix measure 0). These 
measures will be referred to as the conditional measures of rectangles. We regard 
each rectangle as a direct product of its F , F\ and F2 directions. We observe the 
following dichotomy: 

(1) Either for every rectangle, in a set of positive measure, at least 1/3 of its 
conditional measure is concentrated on a single F 0 F\ leaf, hence at one 
point, 

(2) Or there exists a set Y with fixiX) > 0.97 which consists of whole rectan­
gles and a number d > 0 such tha t for any rectangle in Y any subrectangle 
tha t carries at least 1/3 of the conditional measure has width at least d 
along F2-direction. 

In the first case the existence of atoms for the conditional measure? of rectangles 
implies the existence of atoms for the conditional measures on foliation F 0 F\ 0 F2. 
As in the proof of Lemma 3.7 we see that since this foliation is contracted by b the 
existence of atoms forces the conditional measures on F 0 F x 0 F2 be atomic. 
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In the latter case each rectangle in Y can be split into three subrectangles of 
width at least d along one-dimensional F2 direction so that both the left and the 
right ones have the conditional measure at least 1/3. We again may assume that 
the conditional measures do not have atoms since otherwise we could argue as in 
the first case. 

Now we regard the intersection of the compact set K with any rectangle as 
a graph of a continuous (not necessarily everywhere defined) function from in­
direction to Fi 0 ^-direction. The family of these functions is equicontinuous. We 
would like to show that this equicontinuity contradicts to the recurrence under the 
action of a properly chosen element. 

Since b contracts F 0 F\ 0 F2 we can find sufficiently large number n such that 
the size of the image of any rectangle under the action of bn is 7-small. The distance 
along the F2 direction between the images of the right and the left subrectangles, 
which was at least d, becomes at least d!. Let us fix some e < d' and consider 8 > 0 
given by the equicontinuity. Since a acts isometrically on F\ 0 F2 and contracts F 
we can choose k so large that the image of any rectangle under akbn is 5-small in 
F direction. We see that the element akbn satisfies the following conditions: 

(1) The image of any rectangle is (5-narrow in the F direction 
(2) The distance along the F2 direction between the images of the right and 

the left subrectangles is at lest e 
(3) The diameter of the image of any rectangle is less than 7, hence the image 

cannot intersect 7-interiors of two different rectangles simultaneously. 

Under these conditions the images of the right and the left subrectangles can not 
intersect Z = X Pi Y simultaneously. But this implies that fix{okbn{Z) D Z) < 
^fxx{Z) which is impossible since /JL(Z) = fix (Z) fix (y) > 0.97. This shows that 
the second alternative of the dichotomy is impossible and proves that the conditional 
measures on F 0 F\ 0 F2 are atomic. • 

Thus Lemma 3.8 is proved. • 

This finished the proof of Theorem 3.1 in the case of atomic conditional mea­
sures. 

3.5. The case of Haar conditional measures. 

LEMMA 3.11. Let F be an invariant foliation. Suppose that for \x — a.e. x the 
conditional measure fi^ is a Haar measure on an affine subspace Sx with dim Sx — 
I > 1. Then there exist a finite index subgroup T of Zk, rational subtori Ti C Tm

? 

i — 1,..., N, of the same dimension, and Borel probability measures fii, i = 1,..., N, 
on Tm such that: 

(1) For fi — a.e. x the closure of Sx is a translation of Ti for some i, 
(2) The original measure decomposes as fij™ = jj(fi\ + ... -f /ijv)? 
(3) fii, i — 1,..., N is invariant under the group of translations in the direction 

ofTi, 
(4) Ti and fit, i = 1,..., JV, are invariant under a(T). 
(5) All actions (a( r ) , /x j are algebraically isomorphic by the toral automor­

phisms from a(Zk/T). 

PROOF. Let us denote the closure of Sx by T(x). T{x) is a rational subtorus 
which corresponds to the minimal rational subspace that contains Sx. Hence 
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dimT(x) is an invariant function. Since the original measure is ergodic we con­
clude that dimT(x) is constant /i-a.e. Let us call two points x and y equivalent if 
T(x) = T(y). This equivalence relation gives rise to a measurable partition of Tm 

into rational subtori. 
We first show that the conditional measures on these tori are Lebesgue. Indeed, 

let us consider a typical torus T with the conditional measure \±T- The torus T 
is foliated by affine subspaces Sx in such a way that the conditional measures of 
\±T on Sx are Haar for /i^-a.e. x. One can assign an orthonormal basis to each 
subspace Sx in a measurable way. This produces a measurable R̂  action on T which 
preserves \IT- Let us take the ergodic decomposition of /XT with respect to this W 
action and consider one ergodic component. The direction of Sx is invariant under 
the action since the subspace Sx is the same for all points on one trajectory. Hence 
almost all subspaces Sx within one ergodic component have the same direction, i.e. 
are parallel. It follows that the measure on this ergodic component is invariant 
under translations in this direction. By the construction of T the closure of Sx 

equals T for all x. This implies that the measure on any ergodic component is a 
Haar measure on T. Hence fir is the Lebesgue measure on T. 

Since there can be at most countably many classes of parallel tori we conclude 
that there exists a torus T\ such that the set E\ consisting of all points x for which 
T(x) is parallel to T\ has positive measure. By recurrence, for any generator Aj 
of the action a there exists n > 0 such that /jJjm(Ei D Aj'(Ei)) > 0. This means 
that for any point x in this intersection the element A™ maps T(x) to a parallel 
torus. Since A™ is an affine map it follows that A™ preserves this class of parallel 
tori. Hence A™{Ei) = E\. In the same way it follows that the set E\ is invariant 
with respect to the action of a finite index subgroup T C Zk. The orbit of the set 
Ei consists of finitely many sets E\, ..., EN of equal measure which correspond to 
the elements of Zk /T. By ergodicity of the original measure the union of these sets 
has full measure. Hence /xTm = mMi + ••• + Miv), where \R.. We note 
that T(x) is parallel to the torus T{ = a{T\) for where a is an element 
of the action a which maps E\ to E{. We conclude that Ti and \±i are invariant 
under a(T) and that \±i is invariant under the group of translations in the direction 
ofTi. • 

This finishes the proof of Theorem 3.1 • 

4. Measure—theoretic rigidity of conjugacies, centralizers, and factors 

In this section we apply results about rigidity of invariant measures for actions 
by toral automorphisms to study fine measurable structure of such actions with 
respect to Lebesgue measure. The conclusions are rather striking: in total contrast 
to the rank one case (where the automorphisms are Bernoulli and hence the en­
tropy is the only invariant of measurable isomorphism) in the higher rank case fine 
algebraic information is coded into measurable structure of the action. This section 
is taken almost verbatim from [KKS]. 

4 .1 . Conjugacies. Suppose a and a' are measurable actions of the same 
group G by measure-preserving transformations of the spaces (X,/.t) and {Y,v), 
respectively. If H : (X, fi) —> (Y, v) is a metric isomorphism (conjugacy) between 
the actions then the lift of the measure /i onto the graphic C X x Y coincides 
with the lift of v to g raphic - 1 . The resulting measure 77 is a very special case of 
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a joining of a and a'\ it is invariant under the diagonal (product) action a x a' 
and its projections to X and Y coincide with /i and v, respectively. Obviously the 
projections establish metric isomorphism of the action a x a' on (X x Y, 77) with a 
on (X, /i) and a ' on (Y, 1/) correspondingly. 

Similarly, if an automorphism i / : (X, /x) —» (X, //) commutes with the action 
a, the lift of /i to g r a p h i c C X x X is a self-joining of a, i.e. it is a x a-invariant 
and both of its projections coincide with \i. Thus an information about invariant 
measures of the products of different actions as well as the product of an action 
with itself may give an information about isomorphisms and centralizers. 

The use of this joining construction in order to deduce rigidity of isomorphisms 
and centralizers from properties of invariant measures of the product was first 
suggested in this context by J.-P. Thouvenot. 

In both cases the ergodic properties of the joining would be known because of 
the isomorphism with the original actions. Very similar considerations apply to the 
actions of semi-groups by noninvertible measure-preserving transformations. We 
will use Theorem 3.2 

Conclusion of Theorem 3.2 obviously holds for any action of Zfc, d > 2 which 
contains a subgroup Z 2 satisfying assumptions of Theorem 3.2. Thus we can deduce 
the following result which is central for our constructions. 

T H E O R E M 4.1. Let a and a' be two actions of Zk by automorphisms of Tn 

and T n correspondingly and assume that a satisfies condition (11). Suppose that 
H : T n —• T n is a measure-preserving isomorphism between (a , A) and (a/, A), 
where A is Haar measure. Then n = nr and H coincides (mod 0) with an affine 
automorphism on the torus T n

; and hence a and a' are algebraically isomorphic. 

P R O O F . First of all, condition (1Z) is invariant under metric isomorphism, hence 
a' also satisfies this condition. But ergodicity with respect to Haar measure can 
also be expressed in terms of the eigenvalues; hence a x a' also satisfies (1Z). Now 
consider the joining measure 77 on graph H C T n + n . The conditions of Theorem 3.2 
are satisfied for the invariant measure rj of the action a x a1. Thus 77 is a translate of 
Haar measure on a rational a x (^-invariant subtorus Tf C T n + n = T n x T n . On 
the other hand we know tha t projections of V to both Tn and T n preserve Haar 
measure and are one- to-one. The partit ions of T ; into pre-images of points for each 
of the projections are measurable partit ions and Haar measures on elements are 
conditional measures. This implies tha t both projections are onto, both partit ions 
are parti t ions into points, and hence n — n' and T' = g r a p h / , where I : T n —>• T n is 
an affine automorphism which has to coincide (mod 0) with the measure-preserving 
isomorphism H. • 

We will call two actions a and a' by automorphisms of a T m measurably (al­
gebraically) isomorphic up to a time change if for some C G G L ( T ? I , Z ) a o C is 
measurably (algebraically) isomorphic to a'. Since a time change is in a sense a 
trivial modification of an action one is primarily interested in distinguishing actions 
up to a time change. The corresponding rigidity criterion follows immediately from 
Theorem 4.1. 

C O R O L L A R Y 4.1. Let a and a' be two actions of Zk by automorphisms ofTn 

and T n , respectively, and assume that a satisfies condition (1Z). If a and OL are 
measurably isomorphic up to a time change then they are algebraically isomorphic 
up to a time change. 
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4.2. Centralizers. Applying Theorem 4.1 to the case a = a' we immediately 
obtain rigidity of the centralizers. 

COROLLARY 4.2. Let a be an action ofZk by automorphisms ofTn satisfying 
condition (7V). Any invertible Lebesgue measure-preserving transformation com­
muting with a coincides (mod 0) with an affine automorphism of Tn . 

Any affine transformation commuting with a preserves the finite set of fixed 
points of the action. Hence the centralizer of a in affine automorphisms has a 
finite index subgroups which consist of automorphisms and which corresponds to 
the centralizer of Pa.(Zd) in GL(n,Z). 

Thus, in contrast with the case of a single automorphism, the centralizer of 
such an action a is not more than countable, and can be identified with a finite 
extension of a certain subgroup of GL(n, Z). As an immediate consequence we 
obtain the following result. 

PROPOSITION 4.1. For any d and k, 2 < d < k, there exists a Zk -action by 
hyperbolic toral automorphisms such that its centralizer in the group of Lebesgue 
measure-preserving transformations is isomorphic to {±1} x Zk. 

PROOF. Consider a hyperbolic matrix A G SL(k + 1, Z) with irreducible char­
acteristic polynomial and real eigenvalues such that the origin is the only fixed point 
of FA- Consider a subgroup of Z(A) isomorphic to Zh and containing A as one of 
its generators. This subgroup determines an embedding p : Zd —> SL(k + 1,Z). It 
is not difficult to see that all matrices in p(Zk) are hyperbolic and hence ergodic, 
condition (TV) is satisfied. Hence by Corollary 4.2, the measure-theoretic central­
izer of the action ap coincides with its algebraic centralizer, which, in turn, and 
obviously, coincides with centralizer of the single automorphism FA isomorphic to 
{±l}xZfc. • 

4.3. Factors, noninvertible centralizers and weak isomorphism. A 
small modification of the proof of Theorem 4.1 produces a result about rigidity of 
factors. 

THEOREM 4.2. Let a and a' be two actions ofZk by automorphisms ofTn and 
Tn respectively, and assume that a satisfies condition (TV). Suppose that H : Tn —» 
Tn is a Lebesgue measure-preserving transformation such that Hoa = a'oH. Then 
a' also satisfies (TV) and H coincides (mod 0) with an epimorphism h : Tn —> Tn 

followed by translation. In particular, a' is an algebraic factor of a. 

PROOF. Since af is a measurable factor of a, every element which is ergodic for 
a is also ergodic for a'. Hence a' also satisfies condition (TV). As before consider 
the product action a x a' which now by the same argument also satisfies (TV). Take 
the ax a' invariant measure r\ = (Id x if)* A on graph if. This measure provides a 
joining of a and a'. Since (a x a', (Id x if)*A) is isomorphic to (a, A) the conditions 
of Corollary 3.2 are satisfied and 77 is a translate of Haar measure on an invariant 
rational subtorus TT. Since Tx projects to the first coordinate one-to-one we deduce 
that H is an algebraic epimorphism (mod 0) followed by a translation. • 

Similarly to the previous subsection the application of Theorem 4.2 to the case 
a — a' gives a description of the centralizer of a in the group of all measure-
preserving transformations. 
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C O R O L L A R Y 4.3. Let a be an action ofZk by automorphisms ofTn satisfying 
condition (IV). Any Lebesgue measure-preserving transformation commuting with 
a coincides (mod 0) with an affine map on Tn. 

T H E O R E M 4.3. Let a be an action of Zd by automorphisms of Tn satisfying 
condition (7V) and a' another Zd-action by toral automorphisms. Then (a , A) is 
weakly isomorphic to (a ; , A') if and only if pa and pa> are isomorphic over Q, i.e. 
if a and a' are finite algebraic factors of each other. 

P R O O F . By Theorem 4.2, a and a' are algebraic factors of each other. This 
implies tha t a' acts on the torus of the same dimension n and hence both algebraic 
factor-maps have finite fibers. But this is equivalent to isomorphism over Q (See 
[KKS] , Proposition 2.1). • 

Part II. N O N U N I F O R M L Y H Y P E R B O L I C A C T I O N S 

The second type of hyperbolicity is non-uniform. A discussion of this concept in 
full generality will appear in [ B K P , Chapter 1]. A particular, and most important 
case of non-uniform hyperbolicity appears in the presence of a hyperbolic measure, 
i.e. an invariant measure with non-vanishing Lyapunov exponents (Sections 5 and 
7.1). 

In the rank one case this is the basis of a very fruitful structural theory at the 
root of which lie modified Bernoulli and Markov paradigms ([P, K M , B P , B K P ] ) . 
Not surprisingly, the analogy with the uniform case extends to the actions of higher-
rank groups and hyperbolic measures display certain rigidity properties not dissim­
ilar to those for Anosov actions. In Sections 5, 6, and 7 we describe some of the 
principal technical tools and certain results concerning the nonuniformly hyperbolic 
situation. Some of these tools can be naturally defined in greater generality than 
the case of actions by diffeomorphisms of compact manifolds which is of principal 
interests for us and we develop appropriate contexts accordingly. In the last sec­
tion we indicate how certain rigidity results appear in this context. The two most 
important ingredients of this approach is the concept of Lyapunov Holder structure 
which is the proper framework for the cocycle rigidity results and the generalization 
of approach from Section 2.2 based on the consideration of conditional measures 
on contracting foliations. Detailed presentation of these results will appear in a 
separate paper. 

5. Linear e x t e n s i o n s of Zk ac t ions 

We begin with a general t reatment of Lyapunov characteristic exponents which 
can be defined for the linear extensions of actions by measure-preserving transfor­
mations of a finite measure space. To simplify notations a bit we will restrict the 
discussion to the discrete time case (Zk actions); the results for the ~Rk case can 
actually be deduced from those for Zk by taking the Zk subgroup in an Rfc action 
and showing tha t its Lyapunov decomposition is if fact Rfc invariant. 

5 .1 . L y a p u n o v e x p o n e n t s and L y a p u n o v metr ic . Let (A, fi) be a prob­
ability Lebesgue space a : Zk x X —> X an ergodic action of the group Zk by 
measure-preserving transformations of the space (A, /i), A : ZkxXxWm —* A x R m 
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a linear extension of the action a. Such an extension is determined by a matrix-
valued cocycle A : Zk x X —> GL(ra,R) as follows 

A(n,x,t) = (a(n, x), A(n, x)(t)), 

where by the group property 

(5.1.1) A(ni + n2, x) = A(n2, a(ni,x))A(ni,x). 

THEOREM 5.1 (Multiplicative Ergodic Theorem for Zk actions). Suppose for 
each n G Zk , 

(5.1.2) log\\A(n,x)\\eL\X,n). 

Then there exist linear functionals xi , • • •, Xi onRk and for ji-a.e. point x G X a 
decomposition of the fiber R™ over x: 

(5.1.3) R™ = EXl(x) © • • • © EXl(x) 

such that for i = 1 , . . . , I and for any v G EXz{x) one has 

(5.1.4) l i m l ° g l l ^ ^ ) l l - X i ( n ) = a 
n-^oo | |n | | 

and 

(5.1.5) lim ^ ^ ^ ( " . ^ - E U i ^ X i N = 0 
n->oo | |n | | 

where mi = &\mEXi(x). Moreover, the set of points where this decomposition is 
defined is a-invariant and decomposition itself is A-invariant. 

Definitions. The functionals xi , • • •, Xi a r e called the Lyapunov characteristic ex­
ponents of A. The dimension mi of the space EXi(x) is called the multiplicity of 
the exponent Xi- The decomposition (5.1.3) is called the (fine) Lyapunov decompo­
sition at the point x. Points where the assertions of the theorem are satisfied will 
be called regular. The set of all regular points will be usually denoted by the letter 
A, sometimes with extra indices. A basis t\,..., tm of R^1 for a regular point x is 
called regular if it agrees with the Lyapunov decomposition (5.1.3) i.e. can be split 
into bases of the spaces EXl ( x ) , . . . , EXl (x). 

Remarks. 

1. Due to the cocycle equation (5.1.1) it is sufficient to require the integra-
bility condition (5.1.2) only for a subset of elements which generate Zk as 
a semigroup, e.g. for the standard generators and their opposites. 

2. For any n G Zfc the values Xi{n)i i — 1 , . . . , / are equal to the Lyapunov 
characteristic exponent of the extension A(n) of the map a(n) in the usual 
sense [KM],Section S2. Even though the map a(n) may not be ergodic 
with respect to \i its Lyapunov exponents are invariant with respect to 
the action of the whole group Zfc and hence constant almost everywhere. 
Naturally, for a particular n the values of Xi{n) m aY coincide for some i 
so the map F(n) may have fewer than / distinct exponents with higher 
multiplicities. 

3. One may think of the group Zk as embedded into Rk as the standard 
integer lattice. The values Xi{i) f°r t eRk \Zk do not make sense in the 
context of the action a. However they are easily interpreted as the Lya­
punov characteristic exponents of the elements of the suspension action. 
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Theorem 5.1 can be easily deduced from the standard Oseledets Multiplicative 
ergodic theorem for linear extensions of a single measure-preserving transformation 
[0],[BKP] by a simple induction process. Namely, one first applies Oseledets 
theorem to the first generator of the Xk action. The Lyapunov decomposition for 
it is invariant under the whole action so one can apply Oseledets theorem to the 
restriction of the extension of the second generator to each element of the Lyapunov 
decomposition and so on. Once one obtained a decomposition for which limits exist 
for multiples of all generators, existence of the limits (5.1.4), (5.1.5) and the linearity 
of exponents follow easily from the cocycle relation (5.1.1). 

Denote the standard scalar product in Rm by < •,• >. Given e > 0 and a 
regular point x we will call the standard e-Lyapunov scalar product (or metric) the 
scalar product < •, • >x,e in R™ defined as follows: 

For u,v G EXi(x), i = l , . . . , / : 

< u,v >x,e= / J < A(n,x)u,A(n,x)v > exp(—2\i(n) — e||n||), 
nezk 

where the series converges due to (5.1.4). 
For u e EXt(x), v e EXj (x), i^j < u, v >x,e = 0. 
We will usually omit the word "standard" and will call this scalar product 

e-Lyapunov scalar product, or, if e has been fixed and no confusion may appear, 
simply Lyapunov scalar product. The norm generated by this scalar product will 
be called the (standard e-) Lyapunov norm and denoted by || • \\x,e 

By construction of the standard e-Lyapunov norm one has for u G EXi(x), 

(5.1.6) exp(xi(n) - e||ri||)||^|U,e < \\A(n,x)u)\\Xi€ < exp(Xi(n) + €||n||)||^||x,e. 

Notice that by definition ||^||x,e > m_:L/2||w||. 
Denote for a S > 0 by Aej the following subset of the set of regular points: 

(5.1.7) Ae,6 = {xeX: W G { x } e R m , |HU,C < ^ M } . 

A real-valued function 0 on X is called tempered at x (with respect to the action 
a) if 

lim Mn>X)) = 0. 
n—>oo fl 

It is easy to see that a tempered function can be estimated from above by a slowly 
changing function. Namely, let <\> be tempered and let e > 0. We define 

(j)e{x) = max(|0(a(n,x))| - e||n||). 
nezk 

Obviously 4>€(x) > \4>{x)\. A simple calculation shows that (j)e indeed changes 
slowly: 

(5.1.8) (j>€{x) - e\\n\\ < 0c(a(n,x)) < cf>e(x) + e||n||. 

The following fact is proved in the same way as for k = 1 in [P],[BKP]. 

PROPOSITION 5.1 (Temperedness of the Lyapunov metrics). For any regular 
point x G X any non-zero u G R™ and any e > 0 the function log ''^T,'6 is tempered. 

Two cocycles A and B over the same action a are called equivalent if there 
exists a function C : X —> GL(m, R) such that 

maxOogHCIMogllC-1!!} 
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is a tempered function and 

B(n,x) = C~1(x)A(n,x)C(a(x,n)). 

Equivalent cocycles have the same Lyapunov characteristic exponents with the 
same multiplicities. The above proposition implies that any measurable coordinate 
change which takes the standard scalar product to the standard e-Lyapunov scalar 
product is tempered. Thus any cocycle A satisfying (5.1.2) is equivalent to a block 
cocycle with ml x rrii diagonal blocks Ai(n,x), i = 1 , . . . , I such that 

| |A(n,x) | | < exp(Xz(n) + e\\n\\) and \\A;\n,x)\\ > exp(-x*fa) - e||n||). 

We will call any measurable coordinate change of this kind an e-Lyapunov coordi­
nate change an the resulting equivalent cocycle an e-reduced cocycle. 

5.2. Lyapunov hyper planes and Weyl chambers. Now we can generalize 
certain notions previously introduced in Sections 1.2.3 and 1.3 for special cases. 

The hyperplane kerx C Mfc, where \ is a non-zero Lyapunov exponent, is 
called a Lyapunov hyperplane. The subspace x_ 1(~°°5 0) (corr x - 1 ^ °°)) ls called 
a negative (corr. positive) Lyapunov half-space. A Lyapunov hyperplane L is called 
rational if L n Zfe is a lattice in L, totally irrational if L D Zk = {0}, and partially 
irrational otherwise. For k = 2 we will call Lyapunov hyperplanes Lyapunov lines. 
Naturally , every Lyapunov line is either rational or totally irrational; in the latter 
case we will call it simply irrational. 

A linear extension of an ergodic Zfc action is called partially hyperbolic if there is 
at least one non-zero Lyapunov exponent and hyperbolic if all Lyapunov exponents 
are different from zero. 

A hyperbolic linear extension is called totally non-symplectic (TNS) if non of 
the Lyapunov exponents is proportional to another with the negative coefficient of 
proportionality. 

An element n G 7Lk is called regular if n does not belong to any of the Lyapunov 
hyperplanes. A regular element for a hyperbolic linear extension of a Zfc action is 
called hyperbolic. A Weyl chamber is a connected component of the complement to 
the union of all Lyapunov hyperplanes. 

Each Weyl chamber is an open convex polyhedral cone in Rk. Inside a Weyl 
chamber every non-zero Lyapunov exponent has a constant sign. Conversely, the 
locus of points in M.k for which each non-zero Lyapunov exponent has a particular 
sign is either empty or is a Weyl chamber. Thus any Weyl chamber can be char­
acterized as a minimal non-empty intersection of positive and negative Lyapunov 
half-spaces. 

For a partially hyperbolic element n G Zfc and a regular point x we set 

E+(x)= 0 EXi(x) and E~(x)= 0 EXi{x). 
i:Xz{n)>0 i:Xi(n)<0 

These subspaces are called correspondingly the expanding (or unstable ) and the 
contracting (or stable) subspaces for n at the point x. Notice that for any n G Zfc 

if one takes in the definition of the standard e-Lyapunov metric e < eg(n) = 
min\M w n e r e the minimum is taken over all exponents which do not vanish at 
n, then the extension A(ri) uniformly contracts the e-standard Lyapunov metric 
in the contracting subspaces of all regular points and uniformly expands it in the 
expanding subspaces of those points. By making an e-Lyapunov coordinate change 
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we obtain an equivalent cocycle generating an extension B such that B(ri) uniformly 
contracts the standard Euclidean metric in the contracting subspaces of all regular 
points and uniformly expands it in the expanding subspaces of those points. 

By definition contracting and expanding subspaces are the same for all elements 
in the same Weyl chamber. Any minimal non-zero intersection of expanding sub-
spaces for various regular elements corresponds to a positive Lyapunov half-space 
H and will be denoted by EH(X). It is equal to the sum of the subspaces EXi 

for those Xz's which are positive on the subspace H. In other words, all these 
exponents are proportional with positive proportionality coefficients. Thus for 
any Lyapunov half-space H one can find a uniquely defined Lyapunov charac­
teristic exponent x(H) (called the bottom exponent for H) and positive numbers 
1 = ci(H) < c2{H) < , . . . , < cm(H)(H) such that 

m(H) 
EH{X) = ( J ) ECi(H)x(H). 

2 = 1 

Let us denote 
m(H) 

EH(X) = ® ECj(H)X(H)-
j=i 

The nested sequence EH(x) = El
H(x) D E2

H(x) D • • • D E™(H\x) = ECrn{H){H)x{H) 

is called the upper filtration of the space EH{X). 

Number all positive Lyapunov half-spaces by Hi,..., Hs. We will call the 
decomposition 

s 

1=1 

the coarse Lyapunov decomposition at the point x. Extension A is called multiplici­
ty-free if all Lyapunov exponents are simple and no two of them are positively 
proportional. In other words, in the multiplicity-free case the elements of the 
coarse Lyapunov decomposition are one-dimensional. 

5.3. Strongly hyperbolic extensions. In the case of multiple exponents it 
is convenient to count each exponent the number of times equal to its multiplicity so 
that there are always exactly m exponents. Since this will not cause any confusion, 
from now on we will denote exponents listed this way by \i ? • • • > Xm5 unless explicitly 
stated otherwise. This allows us to define the Lyapunov map ^ ^ : M^ -^ Rm 

by \I/A — ( x iv - )Xm)- The Lyapunov map is defined up to a permutation of 
coordinates. 

Thus the linear extension \i is hyperbolic if and only if Im ^^4 does not lie in 
any coordinate hyperplane. We will call d i m K e r ^ the defect of JJL and denote 
it by d(A). Equivalently, d(A) is equal to the dimension of the intersection of all 
Lyapunov hyperplanes. Furthermore, d i m l m ^ ^ is called the rank of A and is 
denoted by r(A). Equivalently, r(A) is equal to the maximal number of linearly 
independent Lyapunov exponents. 

Definition A hyperbolic linear extension A is called strongly hyperbolic if d(A) = 0, 
i.e. if the intersection of all Lyapunov hyperplanes consists of the origin. 

Obviously, d(A) + r(A) = k and since r(A) < m 

k < m + d(A). 
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In particular, for any strongly hyperbolic measure 

(5.3.1) k<m. 

5.4. Resonances. Let Xii — • 1X1 be the different Lyapunov exponents of an 
extension A as in Section 1.1.We will say that A possesses an essential resonance 
if the following two conditions hold: 

(7Z1) There exist i G { 1 , . . . , /} and non-negative integers s i , . . . , si such that 

(5-4.1) Xi = Y^SjXj 

(7Z2) There exists a Weyl chamber W such that in W Xi < 0 a n d Xj < 0 f°r 

all j such that Sj ^ 0. 

If A does not possess any essential resonances we will call it essentially non-
resonant If in addition all exponents are simple (multiplicity one ) we will say that 
A is non-resonant. 

Let xi,..., x\ be negative numbers. We will call a relation of the form 

(5.4.2) xz = ^jTsjXj, 

where s i , . . . , si are non-negative integers, a resonance relation between x±,..., xi. 
Notice that any given set of negative numbers may satisfy only finitely many reso­
nance relations. 

PROPOSITION 5.2. There exists an element n G Zk H W such that 

(1) The multiplicities of the Lyapunov exponents for the extension A(n) are 
the same as for the extension A. 

(2) Any resonance relation between the negative Lyapunov characteristic ex­
ponents of A(n) comes from an essential resonance for A. 

A proof of this statement is contained in the proof of [Kl], Theorem 4.4. 

6. Normal forms and linearization of non-linear extensions 

6.1. Extensions by non-linear contractions. We will be interested later 
on in the way a smooth Zk action with a partially hyperbolic invariant measure 
acts on the family of stable manifolds of its regular element. This naturally leads 
us to the study of measurable extensions of a measure-preserving transformation 
by diffeomorphisms preserving the zero section with negative Lyapunov exponents 
for the derivative at that section, as well as centralizers of such extensions. 

Let as before (X, /A) be a probability Lebesgue space and a : Zk x X -» X be 
an ergodic action of the group Zk by measure-preserving transformations of the 
space (X, fi). We will assume that an extension $ of a is defined in a neighborhood 
of the zero section, preserves the zero section and acts by C°° diffeomorphisms in 
the fibers. In other words, $ can be written in coordinates (x,t) G X x Rm as 

(6.1.1) $( n,x,t) = (pL(n,x},J-(n,x)(t)'), 

where T(n, 0) = 0 and T is C°° in t. 
The derivatives in the t variable at the zero section which we will denote 

simply by DT^n.x) define a linear extension of a. We assume that for some 
no G Zk, DjT0(no,x) has negative characteristic exponents. We will also assume 
that all partial derivatives of all orders are tempered functions. 
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We will consider the following natural notion of equivalence for extensions of 
the form (6.1.1). Namely, we will allow coordinate changes which are measurable 
in x, preserve each fiber R™, fix the origin, are C°° in each fiber and have tempered 
logarithm of all derivatives of all orders at the zero section. We will call such 
coordinate changes admissible. Our main purpose is to show that any extension 
can be brought to a certain normal form by an admissible coordinate change. We 
will do it by first considering the element F(no). We will find a normal form for it 
and them describe the centralizer of tha t normal form. This description will show 
tha t the admissible coordinate change bringing F(no) to its normal form also brings 
the whole extension F to a certain normal form. The simplest kind of such a normal 
form is linear. The obstacles to linearization of F{n$) via an admissible coordinate 
change are resonance relations between the Lyapunov characteristic exponents of 
the derivative at the zero section. Presence of such relations might force existence 
of certain non-linear resonance terms in the normal form. 

6.2. N o r m a l forms. The results of this sub-section represent one of several 
natural "non-stat ionary" generalizations of well-known facts about normal forms 
of smooth contractions near a fixed point or an invariant manifold which can be 
for example in [Be] and [BKj. Another version of the non-stat ionary normal form 
theory for contractions adapted to the study of uniformly hyperbolic dynamical 
systems is developed in [GK] and [G]. The latter version is a crucial in the proofs 
of local differentiable rigidity both for actions of abelian groups [KS2], as well as 
higher rank Lie groups and their lattices [MQ]. 

Let (X, /i) be a probability Lebesgue space, / : X —» X be a measure-preserving 
transformation of (X,/UL), not necessarily ergodic, U an open neighborhood of the 
origin in R m and <I> : X x U —• X x R m an extension of / satisfying assumptions 
corresponding those for <£(no) above. Namely, it preserves the zero section, is C°° 
along the fibers, the Lyapunov characteristic exponents for the linear extension 
defined by the derivatives at zero section are constant almost everywhere and neg­
ative and all higher derivatives are tempered functions. Let Xii • - • Xi be different 
Lyapunov characteristic exponents of the derivative extension and rai,..., mi be 
their multiplicities. Consider all the resonance relations (5.4.2) between the num­
bers x%-> — - Xi- Represent R m as the direct sum of the spaces Rm% . . . ,Mmz and 
let ( t i , . . . ,£/) be the corresponding coordinate representation of a vector t G R m . 
Let P : R m -+ R m ; (tlj...,tl) ^ (Pi(tu... ,tt),.. .,Pi(tu... ,tt)) be a polyno­
mial map preserving the origin. We will say tha t the map P is of resonance type 
if it contains only such homogeneous terms in Pi(ti,..., t/) with degree of homo­
geneity Sj in the coordinates of tj, i = 1 , . . . , / for which the resonance relation 
Xi = ^2j-Li sjXj holds. It is easy to see tha t polynomial maps of the resonance 
type with invertible derivative at the origin form a group. Since there are only 
finitely many resonance relations between x i , • • •, Xi this is a finite-dimensional Lie 
group. We will denote this group by Gx. In particular, if there are no resonance 
relations between the numbers Xi? • • • Xi then Gx = GL( ra ,R) , the group of linear 
automorphisms of R m . 

T H E O R E M 6.1 (non-stat ionary normal form for contractions). There exists an 
admissible coordinate change in X x R m which transforms <l> to an extension ^ of 
the following form 

(6.2.1) 9(x,t) = (f(x),Vx{t)) 
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where for almost every x £ X, Vx £ Gx. 

The proof of Theorem 6.1 follows one of the usual schemes in the normal form 
theory. ( see, e.g. [KH, Section 6.6], for the local case and [GK] for the uniformly 
hyperbolic nonstationary case). It includes three steps: 

Step 1 Finding a tempered formal coordinate change, i.e. the Taylor series at 
the zero section for the desired coordinate change. 

Step 2 Constructing a tempered smooth (C°°) coordinate change for which the 
formal power series found at Step 1 is the Taylor series at the zero section 

Step 3 The coordinate change constructed at Step 2 conjugates our extension 
with an extension which is C°° tangent to the derivative extension. We 
show that any two tempered C°° tangent contracting extensions are con­
jugate via a C°° tempered coordinate change C°° tangent to identity 

We will outline Step 1 since at that step the role played by resonances becomes 
apparent. In particular it becomes clear that the nonuniform case is a more direct 
generalization of the local one and the Lyapunov exponents play exactly the same 
role as the eigenvalues. In the uniform case considered in [GK] an extra narrow 
band condition is required and not only resonance but also subresonance terms have 
to be allowed in the normal form. Of course the price paid for this simplification 
is that the dependence on the base point in the nonuniform nonstationary normal 
form is only measurable even if all the data are smooth. 

Steps 2 and 3 are very similar to the uniform nonstationary arguments in [GK] 
since the use of Lyapunov metrics essentially reduces our situation to the case of 
an extension by uniform contractions. 

First we make a linear coordinate which brings the derivative at the zero 
section to the block form as described at the end of Section 5.1. Denote the 
rrii x mi, i = 1 , . . . , I blocks thus obtained by $ i ( x ) , . . . , &i(x). Denote the co­
ordinates corresponding this block form by t i , . . . , fy, where U G Mrni. 

We will look inductively for successive jets of the desired coordinate change 
at the zero section to eliminate the non-resonance terms of higher and higher 
order.The base of the induction is the linear coordinate change described above. 
At the nth inductive step we start form the extension whose nth jets are polynomials 
of resonance type. We will find a coordinate change with the identity linear part 
and polynomial homogeneous non-linear part of degree n + 1. Composing this 
coordinate change with the result from the previous steps would not change the 
lower order terms. The ti component Cx(ti,... ,£/) of the coordinate change with 
degree of homogeneity Sj in the coordinates oitj, j = 1 . . . , / satisfies the following 
functional equation 

<$>^{x)Cx{tu . . . , ti) - C / ( x ) ( $ i ( x ) t i , . . . , ^i{x)U) = Hx(t), 

where Hx(t) is a known function determined by the previous steps of the process. 
Let for t = ( t i , . . . ,£/), $(t) — (3>i(£i), • . . , $i(ti)). In the non-resonance case we 
can solve this equation by one of the two "telescoping sums": if 

(6.2.2) X i > $ > A i > 

then 
(6.2.3) 

oo 

ra=0 
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where the series in the right-hand part converges exponentially; if 

(6-2.4) X < < X > X j . 

then 

(6.2.5) Cx{t) = 
OO 

- £ w 1 ^ ) ) • • • *i(rm(*))ff/-m(I)(*-i(rm(ao)• • • *-\rx{x)){t)), 
m—l 

where again the series converges exponentially. Notice that the former case holds 
for all but finitely many homogeneous terms. The resonance terms of degree n-\-\ 
do not change, at this and successive steps. However that they were likely to have 
changed at the previous steps. Thus, while the type of normal form is determined 
by the first jet (the derivative extension), coefficients of its nth jet depend on the 
(n — l)st jet of the original extension. 

THEOREM 6.2 (Centralizer for resonance maps). Let g he a non-singular (not 
necessarily measure-preserving) transformation of the space (X, /i) commuting with 
f, and T(x,i) — (g(x),Qx(t)) be an extension of g by C°° local diffeomorphisms 
preserving the zero section and commuting with an extension ^ of the form (6.2.1). 
Then for almost every x G X, Qx G Gx. 

For certain applications it is useful to define another class of polynomial maps 
associated with a given set of Lyapunov exponents. As before let P : Rm —» 
Mm; (ti,... ,ti) i-» (P i ( t i , . . . ,£ /) , . . . ,P / ( t i , . . . ,£/)) be a polynomial map preserv­
ing the origin. We will say that the map P is of sub-resonance type if it has homo­
geneous terms in Pi(t\,..., £/) with degree of homogeneity Sj in the coordinates of 
tj, z = l , . . . , / only if 

In other words, in addition to resonance terms we also allow terms satisfying the 
strict inequality (6.2.4). The product of two maps of sub-resonance type is again 
a map of sub-resonance type; thus, as in the case of resonance maps, polynomial 
maps of sub-resonance type with invertible derivative at the origin form a group. 
It is larger than Gx but still finite dimensional. We will denote this group by SRX. 
In particular, if minxi > 2maxx?, then SRX = GL(m, R). Theorem 6.2 has a 
counterpart for maps of sub-resonance type. 

THEOREM 6.3 (Centralizer for sub-resonance maps). Let ^ be an extension of 
a measure-preserving transformation / ; (X, /i —> (X, fi) of the following form 

*&(x,t) = (f{x),Vx{t)), where for almost every x G X, Vx E SRX. 

Let g be a non-singular transformation of the space (X, /i) commuting with f, and 
T(x,£) = (g(x),gx(t)) be an extension of g by C°° local diffeomorphisms preserving 
the zero section and commuting with an extension ^ . Then for almost every 
x eX, gxe SRX. 

The proofs of theorems 6.2 and 6.3 are similar to the proof of Theorem 1.2 
from [GK] with a proper allowance for non-uniformity of the situation. Details 
will appear in a separate paper. 
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7. Pesin theory for 7Lk actions 

7.1. Local Zfc actions and rank restrictions. 
7.1.1. Locally maximal sets. The main situation when the general setup de­

scribed in the previous two sections arises is the extension of a smooth Zk action 
by derivatives. A somewhat more general semi-local setup is as follows. 

Let M be a differentiate manifold, U C M an open set and A c C / a compact 
subset. Let / i , . . . , fk : U —» M be commuting diffeomorphic embeddings of class 
C 1 + e for some e > 0 preserving the set A. Obviously, the maps / i , . . . , /& restricted 
to the set A generate an action of the group Zk on A. Outside A the action of 
the whole group Zk may not be defined. We will call this situation a local Zk 

action near A. Our standard notation for a local action will be F so that for 
n = (rai, . . . , nk) e Zk one has F(nu . . . , nk) = /f1 o • • • o f^k. The set A is called 
a locally maximal set for the local action F if for some open set V D A the set A is 
the biggest invariant set contained in V, i.e. 

A = p | F(n)V. 
n£Zk 

Any such set V will be called a separating neighborhood for A. 
7.1.2. Lyapunov exponents and hyperbolic measures for local actions. Let \i 

be a Borel probability F-invariant ergodic measure such that supp// C A. Even 
though the tangent bundle TM or its restriction to A, T\M may not be trivial, 
it is always trivial up to a set of measure .zero. So the derivatives of the local 
action DF acting on T^M generate a linear extension of F as described in Section 
5. Different trivializations define cohomologous linear extensions ( see [KM]) so 
various properties of this extensions discussed in Section 5 do not depend on a 
particular choice of the trivialization. Accordingly we will attribute these properties 
to the action F itself. Thus we will speak of the Lyapunov characteristic exponents, 
hyperbolic measures, Weyl chambers, etc of a local action. 

In the smooth situation various feature of the structure of the derivative ex­
tension are more of less directly reflected in the structure of the (non-linear) action 
itself. Accordingly we will associate the attributes of the derivative extension to the 
action and the measure. Notice that cocycles associated to the derivative extension 
depend on a choice of a measurable trivialization of the tangent bundle but cocy­
cles corresponding to different trivializations are cohomologous. Thus Lyapunov 
exponents for the derivative cocycle with respect to an ergodic invariant measure 
are constant almost everywhere and thus are well defined as well as all notions 
derived form those exponents: Lyapunov hyperplanes, Weyl chambers, Lyapunov 
map, rank, defect, etc. We will thus speak about Lyapunov exponents of a local 
action with respect to an invariant measure, about partially hyperbolic, strongly 
hyperbolic and TNS (totally nonsymplectic) measures. In this case we will use the 
notation \J>M for the Lyapunov map, r{fi) for the rank and so on. 

7.1.3. TNS actions. Cartan actions ([KKS]) of which the Z2 actions of section 
2.1 are the simplest examples are TNS. See [NT, Section 5] for a detailed discussion 
of TNS actions, in particular for specific examples of such actions on Tori and 
nilmanifolds. Among algebraic Anosov actions discussed in Section 1.3 TNS actions 
appear only among actions by automorphisms of tori and nilmanifolds, their finite 
affine extensions and suspensions. Most of the other interesting examples, are 
related in one way or another with semisimple Lie groups, and hence possess at 
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least a partial simplectic structure in certain transverse directions. Hence some 
Lyapunov exponents appear in pairs which differ by the sign. See the description 
of standard Anosov actions in [KS1]. 

7.1.4. The rank restriction. 

PROPOSITION 7.1 ([Kl]). / / I m ^ intersects the positive octant W+ (and hence 
also the negative octant — W^) then the measure JJL is atomic. 

COROLLARY 7.1. If n is a hyperbolic measure for a local Zfc action and k — 
dimAf + d(/i), then \i is atomic. In particular, any strongly hyperbolic ergodic 
invariant measure for a local 7Lk action on a k-dimensional manifold is atomic. 

PROOF. Obviously r{fi) = dimAf so I m ^ = R d i m M
 D RfmM • 

Corollary 7.1 immediately implies that if a local Zk action on an n-dimensional 
manifold possesses a strongly hyperbolic non-atomic invariant measure than 

(7.1.1) k<n-l. 

This inequality cannot be improved. In fact, for any n > 2 there is a Z n _ 1 action 
on the n-dimensional torus Tn by hyperbolic automorphisms for which Lebesgue 
measure is invariant and strongly hyperbolic. A "surgery" described in [KL] allows 
to produce actions of Z n _ 1 with strongly hyperbolic absolutely continuous invariant 
measures on certain n-dimensional manifolds other than torus. The rank of these 
measures is equal t o n - 1. 

A certain feature of these examples holds in general. 

COROLLARY 7.2. If ii is a non-atomic hyperbolic measure for a local Zk action 
F and r(u) = dimAf — 1 then there exists a regular element n e Zk such that F(n) 
has exactly one positive Lyapunov exponent and this exponent is simple. 

Further results of [Kl] show that in the low-dimensional situations, i.e. for 
n = 2 or 3 the only way for a non-atomic hyperbolic measure to violate (7.1.1) is 
to have elements in the Zk action with massive (in particular, full measure) sets of 
fixed points. In the real-analytic case this leads to the following conclusion: 

PROPOSITION 7.2 ([Kl]). Any hyperbolic invariant measure for an effective 
real- analytic action of 1? on a compact (real-analytic) surface or an effective 
real- analytic action of Z3 on a compact (real-analytic) three-manifold is atomic. 

7.2. Regular neighborhoods and regular sets. (See [BP] for a more de­
tailed discussion in the rank one case.) Consider an ergodic invariant measure \i 
for a local Zk action F. For n-a.e. point x G A we can construct for any e > 0 the 
e-Lyapunov metric for the derivative extension. Fix a sufficiently small e > 0; typi­
cally it is sufficient to assume that e is less than a quarter of the minimal difference 
between two different Lyapunov exponents of the derivative extension. There are 
two types of regular neighborhoods for regular points in the sense of Section 5.1. 
The neighborhoods of the first kind are constructed by taking "boxes" i.e. prod­
ucts of balls in the Lyapunov metric of a fixed sufficiently small size in the spaces 
EXi(x), i = 1 , . . . , I and exponentiating these boxes by the exponential map of the 
reference smooth Riemannian metric. The fine Lyapunov decomposition and the 
e-Lyapunov metric for any e > 0 are continuous when restricted to any set where 

|ijj|'e is bounded. In particular the sets A€is defined by (5.1.7) are closed in this 
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situation and the e-Lyapunov metric and the regular neighborhoods are continu­
ous on those sets. Such a neighborhood comes provided with a s tandard coordinate 
system, i.e. a smooth embedding of the standard box B in R m into M. Conti­
nuity means continuous dependence of this map from the base, point in a proper 
topology, typically, since we mostly deal with C°° maps, the topology will be the 
C 0 0 topology. Similarly to the rank one case [Br] it can be shown later tha t these 
structures are in fact Hoelder continuous. 

The second type of regular neighborhoods is described in [KM], Theorem S.3.1. 
These neighborhoods are obtained by "truncating" the boxes in Lyapunov metric 
further to make their size changing slowly with respect to the reference metric. In 
most situation any of the two types of regular neighborhoods may be used. 

7.3. S tab le and uns tab le manifo lds . (See [BP].) Let us assume that // is 
a hyperbolic measure. Specifying the discussion from Section 5.2 to this case we 
obtain the coarse Lyapunov decomposition of T\M: 

s 

Hadamard-Perron Theorem for Zk actions asserts tha t each element of this decom­
position as well as distributions obtained by the upper filtration in such an element 
can be uniquely integrated to a family of smooth submanifolds which possesses 
certain regularity properties away from sets of small measure. More specifically fix 
a sufficiently small e as before and let Ae = U ^ X J A ^ J . 

Let E be a distribution from an upper filtration of the coarse Lyapunov de­
composition and E' be the sum of the elements of the fine Lyapunov decomposition 
which do not belong to E and x € Ae. In the regular neighborhood lZ(x) of x of 
the first kind, there is a natural product structure given by the exponential of the 
decomposition TXM = E(x) £BE'(x). Then the local integral manifold £{x) C lZ(x) 
has the form expx graph cf)x, where (j)x : B(E(x)) —» E'(x). Here B(E(x)) is the 
box around the origin in E(x) of fixed size in the Lyapunov metric used in the 
construction of the regular neighborhoods and (f)x is a smooth function (in fact, its 
degree of regularity is the same as for the action F), which vanishes at the ori­
gin together with its first differential. Furthermore, if \\DxF{n)\\x_e < 1 — e, then 
F(n)(£(x)) C £(F(n)x) and F(n) contracts £(x). In fact, these manifolds can be 
obtained by considering upper filtrations for individual regular elements of the ac­
tion constructing the corresponding families of integral manifolds and taking their 
intersections. In the case E = EH{ one takes intersections of local stable manifolds 
for regular elements of the action. 

The global integral manifold (B(x) is defined as the smallest invariant set con­
taining the local integral manifold £(x), i.e. 

£(x) = UneZkF(n)(£(F-'l(x)). 

Global integral manifolds are images of the Euclidean space under smooth injective 
immersions. 

As we mentioned before in the description of the regular sets Aej it is sufficient 
(and convenient) to fix a sufficiently small value of the parameter e. This way we 
obtain a family of compact sets depending on a single parameter which we will 
denote by 0. This parameter roughly can be thought as the "guaranteed size" of 
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integral manifolds for the elements of the coarse Lyapunov decomposition and their 
upper filtrations. 

8. R ig id i ty of hyperbo l i c m e a s u r e s in d i m e n s i o n three: an out l ine 

The crucial feature of the argument in Section 2.2 was presence of the critical 
direction such tha t the action along tha t direction was isometric along the foliation 
W and sufficiently ergodic. If we want to apply this type of arguments in more 
general situation we need to understand when a similar situation may appear. 

In the case of algebraic actions discussed in Par t I both the guidance and the 
restrictions are provided by linear algebra. Now we will consider a situation which 
looks much more general from dynamical point of view than our basic example of 
an action of Z 2 on T 3 by hyperbolic automorphisms but whose geometric features 
are very similar. 

8 .1 . L y a p u n o v H o e l d e r cocyc le r igidity for T N S measures . Let us con­
sider an action a of Z 2 by diffeomorphisms of a compact three-dimensional manifold 
M. The key regularity assumption is C 1 + e , for some e > 0, but at the moment 
we can assume tha t the action is C°°. Consider an ergodic a-invariant measure fi 
such tha t all three Lyapunov exponents are different from zero and none of them 
are proportional. In other words, the three Lyapunov lines (see Section 5.2) are 
all different. These lines divide M2 into six Weyl chambers. For a \i almost ev­
ery point x G M there exists a measurable a-invariant splitting of the tangent 
space TXM into three one-dimensional subspaces Ei(x), ^2(^)7 and E$(x) corre­
sponding to three Lyapunov exponents. Each of these distributions as well as their 
pairwise sums are uniquely integrable to a-invariant families of smooth manifolds 
defined almost everywhere with respect to the measure \i (See Section 7.3). While 
these distributions in general are not continuous, they are Holder with respect to 
6-Lyapunov metrics defined in Section 5.1. Fix a smooth Riemannian metric on M 
and let J{(x,a) = log \\Da(a)\E^x-j\\^ i — 1,2,3. The function Ji are additive one 
cocycles, i.e. Ji(x-,a\ + 02) = Ji(x,ai) + Ji(a(ai)(x), 02). Naturally these cocycles 
are also Holder with respect to e-Lyapunov metrics. For these class of cocycles 
we can prove cohomological rigidity: for such a cocycle J one can find a function 
H, also satisfying a Holder condition in a Lyapunov metric, and a homomorphism 
a : Z 2 -» R such tha t 

J ( x , a) = a(a) + H{a{a)(x)) - H(x). 

8.2. Invariant afrine s t ruc ture on contrac t ing manifo lds . Let W be one 
of the three families of one-dimensional invariant manifolds. It turns out tha t 
there is a uniquely defined family of a-invariant smooth affine parameters on these 
manifolds. This is a particular case of the normal form results discussed in Section 
6.2 (Theorems 6.2 and 6.3 since in the case of a single exponent there are no 
resonance relations, the proof is in fact more direct and simple than in the general 
case. The cocycle trivialization result described in the previous subsection allows 
to normalize the affine parameters in such a way tha t they are transformed by the 
transformation a(a) with the constant expansion or contraction coefficient expcr(a). 
Now pass to the suspension of the action a which we also denote by a. This 
action in the direction of the corresponding Lyapunov line preserves the normalized 
affine parameters. From here on we can closely intimate the arguments for the 
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automorphisms of T 3 from Section 2.2 exercising a certain care due to the fact tha t 
this structure is only measurable. 

8 .3 . C o n d i t i o n a l m e a s u r e s a n d r ig id i ty . Consider the system of condi­
tional measures on the leaves of W and identify a typical global leaf with R using a 
point in the support of the conditional measure as the origin and the length param­
eter normalized at tha t point. At this moment it is important to keep in mind tha t 
the normalizations at different (even typical) points of the same leaf need not agree. 
However by Luzin Theorem type argument they do not differ more than a fixed 
amount on a set of large measure. Assumption (£) holds essentially by the same 
reasons as in Section 2.2. The first part of the proof of the key assertion (T) which 
uses weak* compactness and Luzin theorem holds essentially verbatim. Thus, the 
conditional measure on a typical leaf of W is invariant (maybe up to a rescaling) 
with respect to an almost every translation. Again assuming tha t the conditionals 
are atomic implies that the every element of the action has zero entropy. In the 
case of continuous conditional measures one sees again tha t the support of it is a 
closed subgroup of R, hence the whole R. The argument showing tha t the rescaling 
cocycle is identically equal to one again holds. Thus, the conditionals are Lebesgue 
with respect to the smooth invariant afflne parameter, hence, absolutely continuous. 
After tha t simple arguments using Ledrappier's converse [L] to the Pesin entropy 
formula [P] show tha t the measure \i itself must be absolutely continuous. Thus 
the conclusion is the following very general counterpart of the statement (D) from 
section 2.2. 

T H E O R E M 8.1. Let \i be an ergodic invariant measure for a smooth action 
of Z 2 on a compact three-dimensional manifold M such that all three Lyapunov 
characteristic exponents are different from zero and none of them are proportional 
to each other. Then either \i is absolutely continuous or all elements of the action 
have zero entropy with respect to \i. 

A detailed proof of this theorem will appear in a separate paper. An important 
corollary is the following result which to the bet of our knowledge is the first instance 
in the differentiable dynamics in dimension greater than one when global da ta (the 
homotopy class in our case) force existence of an invariant geometric structure for 
an action of noncompact amenable group. 

T H E O R E M 8.2. Any Z 2 action a on T 3 which is homotopic to an action ao by 
hyperbolic automorphisms has an ergodic absolutely continuous invariant measure. 

P R O O F . There is a surjective continuous map d> : T 3 -> T 3 such tha t 

<f> o a = ao o (p. 

This fact can be proven as follows. First, by a theorem of Franks ( [KH, Theorem 
2.6.1]) there is such a map homotopic to identity (call it 0 ( m ) ) for each element 
a ( m ) for m £ Z 2 \ {0} and it is unique. Uniqueness implies tha t the centralizer 
of any hyperbolic automorphism of a torus in the group of homeomorphisms of the 
torus coincides with its centralizer in the group of automorphisms; in particular, 
this centralizer contains no more tha t one element in each homotopy class. Since 
for any n i i , n i 2 £ £ Z 2 \ {0} the map 0 ( m i ) _ 1 o #(1112) o 0 (n i i ) commutes with 
a o ( m i ) a n d is homotopic to #0(1112) = ^ ( n ^ ) " 1 o a(n i2) o 0(1112) we deduce tha t 

0 ( m i ) = 0 ( m 2 ) . 
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In other words, the algebraic action ao is a factor of the action a, or, equivalently 
a is an extension of ao. 

Consider the set M. of all Borel probability measures v on T3 such that ((f)) *v = 
A, Lebesgue measure. The set J\A is convex, weak* compact and a invariant. Hence 
by Tychonoff theorem it contains an a invariant measure. Since a$ is ergodic with 
respect to A almost every ergodic component of an a-invariant measure v £ M. also 
belongs to Ai. Let \i be such an ergodic measure. We will show that it is absolutely 
continuous. 

Since (</>)*/x = A, for any m G Z2, and since for each m G Z2 either the stable 
or unstable foliation for o>o(m) is one-dimensional, one has 

hu(a(m)) > h\(a0(m)) = | logmax |xi(m)| I, 

where x i ( m ) ,X2( m ) and X3(m) a r e eigenvalues of the matrix pa(m). 
This implies in particular that the entropies /iM(a(m)) for all m G Z2 \ {0} are 

uniformly bounded away from zero. 
In order to apply Theorem 8.1 we need to show that ft is a hyperbolic measure 

and that all three Lyapunov lines are different. Notice that this is of course true 
for the Lebesgue measure with respect to a^ after all, this was the starting point 
of the argument in Section 2.2. If there are no more than two Lyapunov lines for a 
then along at least one of these lines at least two of the three Lyapunov exponents 
vanish. By Ruelle inequality [KM] this means that the entropy of the elements of 
the suspension along that line vanishes. Since there are elements of Z2 either on 
the line (if the latter is rational) or arbitrary close to it (if it is irrational), there 
are nonzero elements of a with arbitrary small entropy, a contradiction. • 
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