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Functorial constructions

(For a general overview see [10, Sections 1.3, 2.2, 3.4])

• The restriction of an action to a subgroup. In the abelian

setting the most relevant situation are restrictions of an Rk

action to a connected subgroup isomorphic to Rl for 1 < l < k,

or to a lattice.

• Cartesian product of actions α and β of groups G and H on

spaces X and Y correspondingly is the action α × β of G × H

on X × Y given by

α × β(g, h)(x, y) = (α(g)(x), β(h)(y)).

Restrictions of the Cartesian product to various subgroups of

G × H are also considered.

Of particular interest is the diagonal action, the restriction of

the Cartesian square α × α to the diagonal subgroup of G × G.



• Quotient actions of various kinds, including projections to orbit

spaces of finite and other group actions commuting with a

given action.

• Suspension of a Zk-action. Let α be a Zk action on N . Embed

Zk as the standard lattice in Rk. Zk acts on Rk × N by

β(x, n) = (x − z, z n)

and form the quotient

M = Rk × N/Zk.

Note that the action of Rk on Rk × N by x (y, n) = (x + y, n)

commutes with the Zk-action β and therefore descends to M .

This Rk-action is called the suspension of the Zk-action.



• Natural extension of a Zk
+ action α on X is a Zk action αe on

the space XP of “pasts” i.e. all maps p : −Zk
+ → X such that if

m ∈ −Zk
+, n ∈ Zk

+ and m + n ∈ −Zk
+ then

p(m + n) = α(n)p(m).

The natural extension αe : XP → XP is defined for any m ∈ Zk

as follows: Zk
+ acts on pasts coordinate-wise by the given action

α, −Zk
+ acts by choosing pre-images from the same past, and

the rest of the group is generated by the action of Zk
+ ∪ −Zk

+.

Notice that when X is a manifold, the space XP usually is not.

An important case is an action Zk
+ by covering maps: in this

case XP has locally the structure of the product of a Euclidean

space and Cantor set; solenoids (Section 39) provide typical

examples of this situation.



Roots, Lyapunov exponents and Weyl chambers

for linear actions

Let ρ be an action of a group A, which may be either Zk or Rk, by

linear transformations of Rm, or, equivalently, an embedding

ρ : A → GL(m, R). Let λ : A → C be a character or an eigenvalue

of the action, i.e. for some vector v ∈ Rm and for every a ∈ A,

ρ(a)v = λ(a)v.

The space Ker(ρ − λId)m def
= Rλ is the root space corresponding to

the eigenvalue λ.

Rm splits into the direct sum of the root spaces corresponding to

different real eigenvalues and the real parts of the sums of the roots

spaces corresponding to the pairs of complex conjugate eigenvalues.

(A version of the Jordan normal form theorem.)



Definition 1 For an eigenvalue λ let χ(λ) = log |λ|. Any such χ is

called a Lyapunov exponent of the action ρ.

Let Eχ be the sum of all root spaces Rλ such that χ(λ) = χ. The

space Eχ is usually called the Lyapunov space for the exponent χ.

The dimension of the Lyapunov space Eχ is the multiplicity of the

Lyapunov exponent χ.

For a given element of the action the sum of all Lyapunov spaces

for the exponents which have positive (corr. negative) values at

this element is the expanding (or unstable) (corr. contracting (or

stable)) space for that element.

If A = Zk Lyapunov exponents can be uniquely extended to Rk so

we will always assume that Lyapunov exponents are defined on Rk.



Definition 2 The kernel of a non-zero Lyapunov exponent is

called a Lyapunov hyperplane.

Connected components of the complement to the union of Lyapunov

hyperplanes are called the Weyl chambers for the linear action.

An element of an action is regular if it does not lie on any of the

Lyapunov hyperplanes; thus:

Weyl chambers are connected components of the set of regular

elements.

A linear action is hyperbolic is none of the Lyapunov exponents is

identically equal to zero. It is partially hyperbolic if there is at least

one non-zero Lyapunov exponent.



Algebraic actions

An algebraic action is a non-linear action α (usually on a compact

manifold whose infinitesimal behavior can be described by a single

linear action called the linear part of α. Of particular interest in

dynamics are those algebraic actions whose linear part is

hyperbolic (Algebraic Anosov actions) or partially hyperbolic. All

algebraic actions of Zk and Rk are constructed using projections of

translations and automorphisms of Lie groups to various coset

spaces. Principal classes of algebraic actions:

• Actions of Zk by automorphisms of a torus Tn = Rn/Zn

(Generalizations: affine maps and actions on

(infra)-nilmanifolds)

• Actions of Rk by left translations on homogeneous spaces of

(semi)-simple Lie groups, such as SL(n, R).



Automorphisms and affine maps on tori and

nilmanifolds

An automorphism of the torus Tm is determined by an m × m

matrix A with integer entries and determinant ±1. Our standard

notation for this automorphism is FA. Sometimes the group of all

such matrices, which is isomorphic to the group of automorphisms

of the torus Tm, is denoted by GL(m, Z).

The dual (charcter) group to Tm is Zm. The dual to FA is the

automorphism A∗ : Zm → Zm given by the matrix transposed to A.



Hyperbolicity, ergodicity and Bernoulii property:

Proposition 3 The following conditions are equivalent:

1. None of the eigenvalues of the matrix A is a root of unity.

2. Periodic points of FA are exactly points all of whose

coordinates are rational

3. The automorphism FA is ergodic with respect to Lebesgue

measure.

4. Every orbit of the dual map A∗, except that of zero, is infinite.

5. The automorphism FA is Bernoulli with respect to Lebesgue

measure.

Definition 4 An automorphism of a torus satisfying any of the

conditions above is called ergodic.



All these equivalences except for deducing 5 from any of the other

conditions (which relies on Ornstein Isomorphism Theory, see

[19, 26]) are elementary.

Sketch of proof. The implication 5 → 3 are obvious.

Condition 1 implies that the transposed matrix At also has no

roots of unity among its eigenvalues. Hence all orbits of the dual

map A∗ on the character group Zm other that that of the trivial

character, are infinite (condition 4). There are always countably

many such orbits. Hence not only FA is ergodic (condition 3) but

the corresponding Koopman operator in L2(Tm) has countable

Lebesgue spectrum.



Existence of a root of unity among the eigenvalues of A (the

negation of 1) and hence also of At means that a certain power of

At has a non-zero invariant vector. This also implies negation of 2

since a power of A (and hence of FA) has a whole line of fixed

points.

The space of all invariant vectors for a power of At is rational and

hence contains an element with integer coordinates. In other words,

a non-trivial character χ is invariant with respect a power of A∗,

say (A∗)n and hence
n−1
∑

i=0

χ ◦ F i
A

is a non-constant invariant function, contradicting 3.



Finally, fixed points of Fn
A are obtained from equations

(An − Id)x = k

for k ∈ Zm. Condition 1 implies that for each k solution is unique

and can be found from Kramer’s rule, hence rational; this implies 2.

Thus we have shown that conditions 1,2,3,4 are equivalent. �



Proposition 5 Any of conditions 1-5 implies that the matrix A is

partially hyperbolic.

Sketch of proof. Assume first that the matrix A is semisimple (no

non-trivial Jordan blocks). If all eigenvalues have absolute value

one then Ank → Id for a certain sequence nk → ∞. But since all

powers of A are integer matrices this implies that for a large

enough k, Ank = Id, hence all eigenvalues are roots of unity

contradicting 1.

If there are Jordan blocks there is an invariant rational subspace L

such that A restricted to L is semisimple. Since L is rational its

intersection with the integer lattice is a lattice in L. Hence

restriction of A to L is an integer matrix expressed in that basis.

Now the previous argument applies. �



Since every ergodic automorphism of the torus is Bernoulli

(condition 5) from the measure theory point of view all ergodic

automorphisms are classified by their entropy which is equal to the

sum of positive Lyapunov characteristic exponents.

This follows from the Ornstein Isomorphism Theorem [26,

Theorem 6.5].



A remark on affine actions: Any affine map whose linear part

A is partially hyperbolic has a fixed point and hence is isomorphic

to the ergodic automorphism FA via the translation which takes

zero into a fixed point.

For several commuting affine maps the set of fixed points of any of

them is invariant under the others. Thus any abelian group of affine

maps of a torus which contains an element with partially hyperbolic

linear part has a finite orbit and contains a subgroup of finite index

which has a fixed point and is hence isomorphic to an action by

automorphisms. However, the whole group may not have a fixed

point even if all non-zero elements of the action are hyperbolic [11].



Higher rank actions

The genuine higher rank condition: Let α and α′ be actions

of Zk by automorphisms of Tm and Tm′

correspondingly. Then α′

is called an algebraic factor of α if there exists a surjective

homomorphism h; Tm → Tm′

such that α′ ◦ h = α.

The factor action α′ is called a rank–one factor of α if α′(Zk) has a

subgroup of finite index which consists of powers of a single map.

The following two conditions are equivalent [25]:

(R) The action α contains a subgroup ρ, isomorphic to Z2, which

consists of ergodic automorphisms.

(R′) The action α has no non–trivial rank one algebraic factors.

Either of these conditions describes the most general “genuine

higher rank” situation and is sufficient for a number of important

rigidity properties.



Irreducibility: An important class of genuinely higher rank

actions are those irreducible over Q.

Definition 6 The action α on Tn is called irreducible if any

nontrivial algebraic factor of α has finite fibres.

Proposition 7 Any irreducible over Q automorphism of a torus is

ergodic.

Proposition 8 [1] The following conditions are equivalent:

1. α is irreducible;

2. ρα contains a matrix with characteristic polynomial irreducible

over Q;

3. ρα does not have a nontrivial invariant rational subspace or,

equivalently, any α–invariant closed subgroup of Tn is finite.



Any matrix with irreducible over Q characteristic polynomial has

simple eigenvalues because otherwise the characteristic polynomial

and its derivative are not relatively prime and hence the former is

reducible via the Euclidean algorithm.

Corollary 9 Any irreducible free action α of Zd
+, d ≥ 2, satisfies

condition (R′).

A rank one algebraic factor has to have fibres of positive dimension.

Hence the pre–image of the origin under the factor map is a union

of finitely many rational tori of positive dimension and by

Proposition 8 α cannot be irreducible.



Irreducible actions and units in number fields: [14, Section

3.3] There are close connections between irreducible actions on Tn

and groups of units in number fields of degree n. In fact, algebraic

number theory provides an imporatnt technique for the study of Zk

actions ay automorphisms of a torus.

Let A ∈ GL(n, Z) be a matrix with an irreducible characteristic

polynomial f and hence distinct eigenvalues. The centralizer of A

in M(n, Q) can be identified with the ring of all polynomials in A

with rational coefficients modulo the principal ideal generated by

the polynomial f(A), and hence with the field K = Q(λ), where λ

is an eigenvalue of A, by the map

G : p(A) 7→ p(λ) (0.1)

with p ∈ Q[x]. Notice that if B = p(A) is an integer matrix then

G(B) is an algebraic integer, and if B ∈ GL(n, Z) then G(B) is an

algebraic unit (converse is not necessarily true).



Lemma 10 The map G in (0.1) is injective.

Proof. If G(p(A)) = 1 for p(A) 6= Id, then p(A) has 1 as an

eigenvalue, and hence has a rational subspace consisting of all

invariant vectors. This subspace must be invariant under A which

contradicts its irreducibility. �

Denote by OK the ring of integers in K, by UK the group of units

in OK , by C(A) the centralizer of A in M(n, Z) and by Z(A) the

centralizer of A in the group GL(n, Z).

Lemma 11 G(C(A)) is a ring in K such that

Z[λ] ⊂ G(C(A)) ⊂ OK , and G(Z(A)) = UK ∩ G(C(A)).

Proof. G(C(A)) is a ring because C(A) is a ring. As we pointed out

above images of integer matrices are algebraic integers and images

of matrices with determinant ±1 are algebraic units. Hence

G(C(A)) ⊂ OK . Finally, for every polynomial p with integer

coefficients, p(A) is an integer matrix, hence Z[λ] ⊂ G(C(A)). �



Notice that Z(λ) is a finite index subring of OK ; hence G(C(A))

has the same property.

Remark The groups of units in two different rings, say O1 ⊂ O2,

may coincide. Examples can be found in the table of totally real

cubic fields [3].

Proposition 12 Z(A) is isomorphic to Zr1+r2−1 × F where r1 is

the number the real embeddings, r2 is the number of pairs of

complex conjugate embeddings of the field K into C, and F is a

finite cyclic group.

By Lemma 11, Z(A) is isomorphic to the group of units in the

order G(C(A)), so the statement follows from the Dirichlet Unit

Theorem ([2], Ch.2, §4.3).

Since r1 + 2r2 = n, Proposition 12 gives a bound on the rank of an

irreducible Zk action on Tn.



Conjugacy over C, Q and Z:

Any Zk action α by automorphisms of Tm generated by

FA1
, . . . , FAk

where A1, . . . , Ak are integral matrices defines, an

embedding ρα : Zk → GL(m, Z) by

ρn

α = An1

1 . . . Ank

d ,

where n = (n1, . . . , nd) ∈ Zk.

Actions α and α′ are conjugate via an automorphism (algebraically

isomorphic) if and only if corresponding embeddings ρα and ρ′α are

conjugate over Z. This of course implies conjugacy over Q which is

equivalent to the conjugacy over C and hence, in the irreducible

case, is determined by the eigenvalue structure.



The opposite however is not true in general.

The conjugacy over Z is determined not just by linear algebra as

conjugacy over Q but by the algebraic number theory data. More

specifically, it has to do with the class numbers of the algebraic

fields obtained from adding roots of characteristic polynomials.(see

[14, Theorem 4.5])



Algebraic conjugacy and actions on lattices: Every action

by automorphisms of a torus has many algebraic factors with finite

fibres. These factors are in one–to–one correspondence with lattices

Γ ⊂ Rm which contain the standard lattice Γ0 = Zn, and which

satisfy ρα(Γ) ⊂ Γ.

The factor–action associated with a particular lattice Γ ⊃ Γ0 is

denoted by αΓ. In the case of actions by automorphisms such

factors are also invertible:

if Γ ⊃ Γ0 and ρα(Γ) ⊂ Γ, then ρα(Γ) = Γ.

Let Γ ⊃ Γ0 be a lattice. Take any basis in Γ and let S ∈ GL(n, Q)

be the matrix which maps the standard basis in Γ0 to this basis.

Then obviously the factor–action αΓ is equal to the action αSραS−1 .

In particular, ρα and ραΓ
are conjugate over Q, although not

necessarily over Z.



For any positive integer q, the lattice 1
q
Γ0 is invariant under any

automorphism in GL(n, Z) and gives rise to a factor which is

conjugate to the initial action: one can set S = 1
q
Id and obtains

that ρα = ρα 1

q
Γ0

. On the other hand, one can find, for any lattice

Γ ⊃ Γ0, a positive integer q such that 1
q
Γ0 ⊃ Γ (take q the least

common multiple of denominators of coordinates for a basis of Γ).

Thus α 1

q
Γ0

appears as a factor of αΓ. To summarize:



Proposition 13 [14, Proposition 4.1] Let α and α′ be Zd–actions

by automorphism of the torus Tn. The following are equivalent.

1. ρα and ρα′ are conjugate over Q;

2. there exists an action α′′ such that both α and α′ are

isomorphic to finite algebraic factors of α′′;

3. α and α′ are weakly algebraically isomorphic, i.e. each of them

is isomorphic to a finite algebraic factor of the other.



Cartan actions: Of particular interest are abelian groups of

ergodic automorphisms by Tn of maximal possible rank n − 1,

Definition 14 An action of Zn−1 on Tn for n ≥ 3 by ergodic

automorphisms is called a Cartan action.

The following fact easily follows from Proposition 12.

Proposition 15 Let α be a Cartan action on Tn. Then

1. Any element of the action other than identity has real

eigenvalues and is hyperbolic and thus Bernoulli

2. α is irreducible.

3. The centralizer of α is a finite extension of α.



Lemma 16 Let A be a hyperbolic matrix in SL(n, Z) with

irreducible characteristic polynomial and distinct real eigenvalues.

Then every element of the centralizer Z(A) other than {±Id} is

hyperbolic.

Proof. Assume that B ∈ Z(A) is not hyperbolic. As B is

simultaneously diagonalizable with A and has real eigenvalues, it

has an eigenvalue +1 or −1. The corresponding eigenspace is

rational and A–invariant. Since A is irreducible, this eigenspace has

to coincide with the whole space and hence B = ±Id. �

Corollary 17 Cartan actions are exactly the maximal rank

irreducible actions corresponding to totally real number fields. The

centralizer Z(α) for a Cartan action α is isomorphic to

Zn−1 × {±Id}. Lyapunov exponents for a Cartan action are simple

and Lyapunov hyperplanes are in general position and are

completely irrational, i.e. none of them contains an integer point.



Remarkable properties of Cartan actions

• Global rigidity: Any Anosov action homotopic to a Cartan

action is differentiabaly conjugate to it (F. Rodriguez Hertz,

preprint).

• Isomorphism rigidity: Two Cartan actions are measurably

isomorphic only if they are algebraically isomorphic.[12, 14].

• Measure rigidity: The only ergodic invariant measure for a

Cartan action such that some element has positive entropy is

Lebesgue [16, 18].

• Rigidity of measurable centralizer: The centralizer of a

Cartan action in the group of Lebesgue measure preserving

transformations is a finite extension of the action and consists

of affine transformations [12, 14].



Example 18 [14, Section 6.3] Consider two Cartan actions of Z2

on T3 generated by automorphisms FA, FB and FA′ , FB′

correspondingly, where

A =









0 1 0

0 0 1

1 8 2









B =









2 1 0

0 2 1

1 8 4









,

and

A′ =









−1 2 0

−1 1 1

−5 9 2









B′ =









1 2 0

−1 3 1

−5 9 5









.



This two actions are isomorphic over Q and hence by

Proposition 13 are algebraic factors of each other with finite fibers.

They are however not isomorphic over Z and hence by the measure

rigidity not measurably isomorphic.

However every element is Bernoulli (and hence has a huge

measurable centralizer) and the entropy structures coincide. This is

a remarkable example of a

Rigid construction from soft elements.



Rigidity for genuinely higher rank actions

Let α be a genuinely higher rank action by automophisms of Tm. It

has the following properties similar to those of Cartan actions:

• Local differentiable rigidity: Any smooth action whose

generators are sufficiently close to those of α differentiabaly

conjugate to α [17, 4, 5].

• Isomorphism rigidity: Any action by automorphisms of a

torus measurably isomorphic to α is algebraically isomorphic to

it [12, 14]

• Measure rigidity: (Anosov case) The only ergodic invariant

measures for α such that some element has positive entropy are

Lebesgue measures on close invariant subgroups [8].

• Rigidity of measurable centralizer: The centralizer of α in

the group of Lebesgue measure preserving transformations

consists of affine transformations[12, 14].



More examples on the torus

Symplectic actions on T4: The real rank of the group Sp(4, R)

of invertible symplectic 4 × 4 matrices is two. Accordingly, any

maximal split Cartan subgroup of Sp(4, R) may intersect the

integer lattice Sp(4, Z) by a group of rank at most two. In fact,

such an intersection may have rank two and be irreducible over Q.

Using it as the linear part one obtains an irreducible Z2 Anosov

action on T4 by symplectic automorphisms. Let FA and FB be

generators of such an action. Each of the matrices A and B has

two pairs of mutually inverse real eigenvalues. Hence, the four

Lyapunov exponents of the action split into two pairs with

exponents in each pair differing by sign. Thus there are only two

Lyapunov hyperplanes (lines in this case). Geometrically the

picture of exponents and Weyl chambers is the same as for the

product action generated by C × Id and Id × D where

C, D ∈ SL(2, Z) are hyperbolic matrices.



The difference between the product and the irreducible case is in

that the latter satisfies condition (R) while the former does not.

Alternatively, one can explain this as follows. The Lyapunov lines

in the irreducible case are irrational and in the product case they

are simply coordinate axes. If one consider the suspension of the

action in the irreducible case every one-parameter subgroup of R2

acts ergodically including those represented by the Lyapunov line.

Each of those subgroups acts by isometires along one of the

invariant one-dimensional Lyapunov foliations thus providing an

essential geometric ingredient for rigidity properties.



Notice that since A is irreducible with real eigenvalues its

centralizer has rank three by Proposition 12; thus the Z2

symplectic action is embedded into an Anosov action of Z3; a third

generator of this action may be chosen to have two pairs of equal

eigenvalues whose eigenspaces are spanned by pairs of eigenvectors

for the symplectic action with mutually inverse eigenvalues.

Specific examples can be constructed using matrices with recurrent

characteristic polynomials which can be easily analyzed explicitly.

A more sophisticated version of this method produces Example 20

below.



Genuinely partially hyperbolic actions: A genuinely higher

rank action of Zk is called genuinely partially hyperbolic if it has a

zero Lyapunov exponent. In fact, multiplicity of the zero exponent

for such an action is always even because the eigenvalues

corresponding to the exponent are complex and hence come in

conjugate pairs.

Theorem 19 [4, Theorem 3] Irreducible genuinely partially

hyperbolic actions by automorphisms of a torus exist in any even

dimension starting from six and not in any other dimension.

Reducible genuinely partially hyperbolic actions exist in any odd

dimension starting from nine.

No genuinely partially hyperbolic actions exist in dimension up to

five and seven.



Example 20 Let A =



























0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 2 5 3 5 2



























,B =



























0 −6 −6 −3 −6 2

−2 4 4 0 7 −2

2 −6 −6 −2 −10 3

−3 8 9 3 13 −4

4 −11 −12 −3 −17 5

−5 14 14 3 22 −7



























. The Z2 action on T6 Fn
AFm

B

is irreducible and genuinely partially hyperbolic ([4, Section 6.2])



Natural extensions

Solenoids: The natural extension of a Zk
+ action by

endomorphisms of a torus can be identified with a Zk action by

automorphisms of a solenoid, a compact abelian group modeled

locally on the product of a Euclidean space (the Archimedean

directions) and several additive groups of p-adic integers (the

non-Archimedean directions). The Lyapunov exponents accordingly

also split into ordinary Archimedean and non-Archimedean. The

weyl chambers analysis extends to this case although the space of

the action is no longer a manifold.

We will consider only the simplest and most famous example. For

detailed discussion and more elaborate examples see [16].



Example 21 [9, Furstenberg’s ×2,×3] The action E2,3 of Z2
+ on

the circle generated by the endomorphisms:

E2 : S1 → S1 x 7→ 2x, (mod 1)

and

E3 : S1 → S1 x 7→ 3x, (mod 1).

The natural extension S2,3 of E2,3 acts on the dual group of the

discrete group Z[ 12 , 1
3 ]. Topologically it is a connected but not

locally connected one-dimensional compact, locally modeled on the

direct product of R and the Cantor set. As a group it is an

extension of S1 with the product of dyadic integers and 3-adic

integers Z2 × Z3 in the fiber.



The Lyapunov exponents:

Identify the “time” Z2 with the integer lattice in the plane R2 with

coordinates s, t. There are three Lyapunov exponents for S2,3: the

Archimedean

t log 2 + s log 3

and two non-Archmedean:

−t log 2 and − s log 3.

This can be seen form the observarion that the multiplication by

two acts as in isometry on Z3 and as a contraction with constant

coefficient of contraction 1/2 on Z2 and correspondingly the

multiplication by three acts as an isometry on Z2 and as a

contraction with coefficient 1/3 on Z3.



Lyapunov lines and Weyl chambers:

Thus, there are three Lyapunov lines in the general position

t log 2 + s log 3 = 0, t = 0 and s = 0.

and six Weyl chambers and combinatorially the picture looks

exactly the same as for any Cartan action of Z2 on T3.

The positive quadrant constitutes one of the six Weyl chambers,

namely the one where the Archimedean exponent is positive and

two non-Archimedean ones are negative.



A nilpotent example: The simplest non-abelian counterpart of

Example 21 appears on a three-dimensional nilmanifold.

Example 22 Let H be the Heisenberg group of 3 × 3

upper-diagonal unipotent matrices N
def
=









1 x y

0 1 z

0 0 1









, x, y, z ∈ R,

Λ ⊂ H be the subgroup of integer matrices, ρ2 : H → H be the

following automorphism









1 x y

0 1 z

0 0 1









7→









1 2x 4y

0 1 2z

0 0 1









. Then

ρ(Λ) ⊂ Λ and ρ projects to a non-invertible expanding map of the

compact nil-manifold X
def
= H/Λ [13, Section 17.3]. We similarly

define the automorphism ρ3 : H → H with 2’s and 4 in the above

formula replaced by 3’s and 9. Projections of ρ2 and ρ3 to X define

an expanding action of Z2
+.



There are two Archimedean Lyapunov exponents in this example.

In the notations from the previous subsection they can be

expressed by

χ− = t log 2 + s log 3

and

χ+ = t log 4 + s log 9;

χ− has multiplicity 2 and χ+ is simple. The Lyapunov distribution

of χ− is non-integrable. The relation χ+ = 2χ− is a simple example

of a resonance.

The projection of this action to the center gives the action from

Example 21.

For the theory of actions by automorphisms of general compact

abelian groups see [24].



Algebraic Rk-actions

A subgroup Λ of a Lie group H is called a uniform lattice if Λ is

discrete and cocompact, i.e if there is a compact subset F ⊂ H

such that F · Λ = H. (There are also non-uniform lattices such as

SL(n, Z) ⊂ SL(n, R))[22, 20].

Let A be a subgroup of a connected Lie group H isomorphic to Rk.

The group A acts on the quotient H/Λ by left translations.

Suppose C is a compact subgroup of H which commutes with A.

Then the Rk-action on H/Λ descends to an action on C \H/Λ. The

general algebraic Rk-action ρ is a finite factor of such an action.

Let c be the Lie algebra of C. The linear part of ρ is the

representation of Rk on c \ h induced by the adjoint representation

of Rk on the Lie algebra h of H. Let a be the Lie algebra of A. The

linear part of ρ fixes elements of a. The factor of the linear part of

ρ on c ⊕ a \ h is the reduced linear part of ρ.



An algebraic Rk action is partially hyperbolic if its linear part is

partially hyperbolic. Such an action is called Anosov if its reduced

linear part is hyperbolic.

The Lyapunov exponents, Lyapunov hyperplanes, Weyl chambers

and regular elements for algebraic actions are defined as those for

their linear parts.

Since for an Rk action Lyapunov exponents in a are zeroes the

multiplicity of the zero exponent for such an action is at least k; it

is equal to k if and only if the action is Anosov.



Invariant distributions and their integrability:

Given an algebraic action, root spaces, Lyapunov spaces, and other

invariant subspaces of the Lie algebra or its factors extend in the

right-invariant way to fields of subspaces (also called distributions)

invariant for the action. The terminology for the invariant spaces

(such as Lyapunov, stable, etc) extends to those distributions.

Integrability of these distributions is determined by the usual

bracket Frobenius criterion. If a distribution is uniquely integrable

its integral manifolds form an invariant homogeneous foliation.



The following invariant distributions are integrable:

• One-dimensional Lyapunov distributions, i.e. those of simple

(multiplicity one) Lyapunov exponents;

• Stable and unstable distributions for any element

• Lyapunov distribution for the zero Lyapunov exponent which is

usually called the neutral distribution for the action.

• Intersections of stable distributions for different elements of an

action are also integrable.

• In particular, the smallest subspaces which can be obtained

intersections of stable distributions correspond to sums of

Lyapunov distributions obtained from all exponents

proportional to a given one with positive coefficients of

proportionality. These integrable coarse Lyapunov distributions

play the central role in the rigidity theory.



Lyapunov distributions may not be integrable.

The simplest example of a non-integrable Lyapunov distribution,

albeit in the non-invertible case, appears in Example 22 for the

“smaller” Lyapunov exponent χ−. Invertible examples also exist.

Non-integrability of Lyapunov distribution Eχ for algebraic actions

may appear only if 2χ is also a Lyapunov exponent for the action, a

special case of a resonance.



Classes of algebraic Rk actions [15]

Suspensions: Every Zk action α by automorphisms or affine

maps of a torus,(and also of a nilmanifold or an infranilmanifold

generates an Rk action via the suspension construction.

The suspension of an Anosov (partially hyperbolic) action of Zk is

an Anosov (partially hyperbolic) action of Rk.

Suspensions are algebraic actions.

Take G = Rk ⊲< Rm (or G = Rk ⊲< N), the semi-direct product of

Rk with Rm (or a simply connected nilpotent Lie group N). Let

Λ ⊂ G be the semi-direct product of the lattice Zk ⊂ Rk with

Zm ⊂ Rm or Γ, a lattice in N . The action of Rk on G/Λ by left

translation is isomorphic to the suspension of the action α.



Weyl chamber flow: This is a leading class of algebraic Anosov

and partially hyperbolic Rk actions.

Let G be a semisimple connected real Lie group of the noncompact

type and of R-rank at least 2. Let A be the connected component

of identity of a split Cartan subgroup of G. Suppose Γ is an

irreducible torsion-free cocompact lattice in G. The centralizer

Z(A) of A splits as a product Z(A) = M A where M is compact.

Since A commutes with M , the action of A by left translations on

G/Γ descends to an A-action on N
def
= M \ G/Γ.

This is the Weyl chamber flow.



Proposition 23 Any Weyl chamber flow is an Anosov action.

Proof Let Σ denote the restricted root system of G. Then the Lie

algebra G of G decomposes

G = M + A +
∑

α∈Σ

Gα

where gα is the root space of α and M and A are the Lie algebras

of M and A. Fix an ordering of Σ. If X is any element of the

positive Weyl chamber C ⊂ A then α(X) is nonzero and real for all

α ∈ Σ. Hence expX acts normally hyperbolically on G with

respect to the foliation given by the MA-orbits. �



If the group G is R-split, i.e. its real rank equals its complex rank

then M = {Id}. In this case the Weyl chamber flow acts on G/Γ.

In the non-split case the action of A on G/Γ is a compact group

extension of the Weyl chamber flow and hence is partially

hyperbolic with the zero Lyapunov exponent of extra multiplicity

dimM .

Restrictions of the Weyl chamber flows to lattices in A are

important examples of discrete partially hyperbolic algebraic

actions. Another interesting class of partially hyperbolic actions

consists of restrictions of the Weyl chamber flows to continuous

subgroups of A of dimension ≥ 2.



Weyl chamber flow on SL(n, R)/Γ

Weyl chamber flows on certain factors of SL(n, R) appear in

number theoretic problems .

Example 24 The subgroup D+
n ⊂ SL(n, R) of positive diagonals is

the connected component of identity of a maximal Cartan subgroup

of SL(n, R). Diagonal entries of d ∈ D+
n have the form

eti , i = 1, . . . , n where t1 + · · · + tn = 0. Thus it is convenient to

parametrize D+
n by coordinates t1, . . . , tn satisfying the relation

t1 + · · · + tn = 0.

For n = 2 the group A is one-parameter with diagonal entries

et, e−t and the action is the geodesic flow on the surface of

constant negative curvature M
def
= SO(2) \ SL(2, R)/Γ.



Lyapunov foliations and the Weyl chambers for the Weyl

chamber flow α on X = SL(n, R)/Γ [7]:

Let d(·, ·) denote a right invariant metric on SL(n, R) and the

induced metric on X . A foliation F is isometric under αt if

d(αtx, αty) = d(x, y) whenever y ∈ F (x). Let 1 ≤ a, b ≤ n always

denote two fixed different indices, and let exp be the

exponentiation map for matrices. Define the matrix

va,b =
(

δ(a,b)(i,j)

)

(i,j)
,

where δ(a,b)(i,j) is 1 if (a, b) = (i, j) and 0 otherwise. So va,b has

only one nonzero entry, namely, that in row a and column b. With

this we define the foliation Fa,b, for which the leaf

Fa,b(x) =
{

exp(sva,b)x : s ∈ R
}

(0.2)

through x consists of all left multiples of x by matrices of the form

exp(sva,b) = Id + sva,b.



The foliation Fa,b is invariant under α, in fact direct calculation

shows

αt
(

Id + sva,b

)

x =
(

Id + seta−tbva,b

)

αtx, (0.3)

the leaf Fa,b(x) is mapped onto Fa,b(α
tx) for any t ∈ D+

n .

Consequently the foliation Fa,b is contracted (corr. expanded or

neutral) under αt if ta < tb (corr. ta > tb or ta = tb). If the

foliation Fa,b is neutral under αt, it is in fact isometric under αt.

The leaves of the orbit foliation O(x) = {αtx : t ∈ D+
n } can be

described similarly using the matrices

ua,b = (δ(a,a)(k,l) − δ(b,b)(k,l))k,l.

In fact exp(ua,b) = αt for some t ∈ D+
n .

Clearly the tangent vectors to the leaves in (0.2) for various pairs

(a, b) together with the orbit directions form a basis of the tangent

space at every x ∈ X .



Proposition 25 Non-zero Lyapunov exponents for the Weyl

chamber flow on SL(n, R)/Γ are ta − tb where a 6= b and

1 ≤ a, b ≤ n. Zero Lyapunov exponent comes only from the orbit

foliation and hence has multiplicity n − 1. Consequently any matrix

d ∈ D+
n whose elements are pairwise different acts normally

hyperbolically on SL(n, R)/Γ and hence is regular.

For every a 6= b the equation ta = tb defines Lyapunov hyperplane

Ha,b ⊂ D+
n . Any elements of this hyperplane acts on the foliation

Fa,b by isometries . Notice that Ha,b = Hb,a and hence each of

these subgroups acts by isometries on two foliations : Fa,b and Fb,a.



The connected components of

A = D+
n \

⋃

a 6=b

Ha,b

are the Weyl chambers of the flow α. For every t ∈ A only the

orbit directions are neutral; hence t is a regular element.

Let I = {(a, b) : a < b}, and let MI be the span of va,b for (a, b) ∈ I

(in the Lie algebra of SL(n, R)). For the invariant foliation FI the

leaf through x is defined by

FI(x) =
{

exp(w)x : w ∈ MI

}

. (0.4)

Furthermore, there exists a Weyl chamber C, called the positive

Weyl chamber, such that for every t ∈ C, the leaf FI(x) is the

unstable manifold for αt. In fact

C = {t ∈ D+
n : ta > tb for all a < b}.



Thus, the picture of Weyl chambers in our sense in this case is

exactly the same as that in the classical sense of the theory of

simple Lie groups This remains true for Weyl chamber flows on

factors of other simple real Lie groups.

Using classification of simple real Lie groups one can obtain

similarly concrete and detailed pictures in those cases. Again our

picture coincides with the classical one.

Example 26 For the Weyl chamber flow on factors SL(n, C) the

Lyapunov hyperplanes and Weyl chambers are the same as for

SL(n, R) but the every non-zero exponent has multiplicity 2.



Unlike suspensions of Cartan actions on the torus where each

Lyapunov foliation appears as the whole isometric foliation for a

certain one-parameter subgroup of the action, here foliations Fa,b

and Fb,a cannot be separated in such a way. The same situation

appears for all Weyl Chamber flows due to the symmetry of the

root systems.

This fact causes serious difficulties in establishing rigidity

properties for Weyl chamber flows and related actions.

Those difficulties are overcome by using non-commutativity of the

Lyapunov distributions, and, specifically the structure of

commutators of the subgroups exp(sva,b) [7, 21, 6]
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