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The word entropy, amalgamated from the greek words energy and

tropos (meaning “turning point”), was introduced in an 1864 work

of Clausius, who defined the change in entropy of a body as heat

transfer divided by temperature and postulated that overall

entropy does not decrease, the second law of thermodynamics.

Entropy was clarified by Botlmann who built on work of Maxwell.

One can describe the state of a gas of particles with finitely many

data by partitioning the phase space into finitely many pieces and

denoting the proportion of particles in the ith piece by pi. Then it

turns out that the most probable states can be found by

maximizing
∑

i pi log pi (discrete Maxwell–Boltzmann law).



Prehistory (entropy in information theory)

1948–50 Shannon information theory

Shannon considered finite alphabets whose symbols have known

probabilities pi and, looking for a function to measure the

uncertainty in choosing a symbol from among these, determined

that up to scale
∑

i pi log pi is the only continuous function of the

pi that increases in n when (p1, . . . , pn) = (1/n, . . . , 1/n) and

behaves naturally with respect to making successive choices.

Accordingly, the entropy of a finite or countable measurable

partition ξ of a probability space is given by

H(ξ) =: Hµ(ξ) =: −
∑

C∈ξ

µ(C) log µ(C) ≥ 0,

where 0 log 0 =: 0. For countable ξ the entropy may be infinite.



1956 Khinchin’s Uspehi survey.

Khinchin gave a very elegant rigorous treatment of information

theory with the entropy of a stationary random process as a

centerpiece. He developed the basic calculus of entropy which in

retrospect looks as a contemporary introduction to the subject of

entropy in ergodic theory. For a measure preserving transformation

T define the joint partition by

ξT
−n =:

n
∨

i=1

T 1−i(ξ),

where ξ ∨ η =: {C ∩ D : C ∈ ξ, D ∈ η}. Now

h(T, ξ) =: hµ(T, ξ) =: lim
n→∞

H(ξT
−n)/n

is called the metric entropy of the transformation T relative to the

partition ξ. (It is easy to see that the limit exists.)



Via conditional entropies

H(ξ|η) =: −
∑

D∈η

µ(D)
∑

C∈ξ

µ(C|D) log µ(C|D),

where µ(A|B) =: µ(A ∩ B)/µ(B), the entropy of a finite state

random process (or, equivalently, the entropy of a

measure-preserving transformation with respect to a given finite

partition) can also be defined as the average amount of information

obtained on one step given complete knowledge of the past

(meaning the sequence of partition elements to which preimages of

a given point belong), i.e.

h(T, ξ) = H(ξ|ξT
−∞

)

.



Kolmogorov’s discovery 1958–59

The same transformation can be coded by many different partitions

and entropies of the corresponding random processes may differ.

Kolmogorov realized that this can be used to define a quantity that

describes the intrinsic complexity of a measure-preserving

transformation. i.e. an invariant.

A partition ξ with finite entropy is a generator for a

measure-preserving transformation T if the set of partitions

subordinate to some
∨n

i=−n T−i(ξ) is dense in the set of finite

entropy partitions endowed with the Rokhlin metric

dR(ξ, η) =: H(ξ|η) + H(η|ξ). Kolmogorov noted that all generators

for a measure preserving transformation T have the same entropy

and defined the entropy of T to be this common value if T has a

generator and ∞ otherwise.



Development of basic theory

1958 Kolmogorov’s original work

1959 Sinai found a natural way to make this notion better

behaved by observing that generators maximize entropy

among partitions and defining the entropy of T as

h(T ) =: hµ(T ) =: sup{h(T, ξ) : H(ξ) < ∞}.

1960 Rokhlin’s Uspehi survey.

Summary of the first explosive phase of development

( Sinai, Abramov, Rokhlin, Pinsker in Moscow; also

Adler, Parry in the West ). Calculations for many examples.

1967 Rokhlin’s lectures (written several years earlier)

present the core of entropy theory in a definitive form;

serve as the model for later textbooks and monographs.



K(Kolmororov)–systems and π(Pinsker)–partitions:

K–property, also introduced by Kolmogorov in 1958, is an

isomorphism invariant version of earlier regularity notions for

random processes: present becomes asymptotically independent of

a all sufficiently long past. It was proved to be equivalent to

completely positive entropy :

h(T, ξ) > 0 for any partition ξ with H(ξ) > 0.

The π–partition is the crudest partition (minimal σ–algebra) which

refines every partition with zero entropy.

Both are the additional key isomorphism invariants stemming from

the notion of entropy.



Entropy and isomorphism: from Kolmogorov’s

work through the seventies

Kolmogorov’s stated motivation for the introduction of entropy was

to provide a new isomorphism invariant for measure preserving

transformations and flows, more specifically to split those with

countable Lebesgue spectrum into continuum non-isomorphic

classes. In particular Bernoulli shifts (independent stationary

random processes) with different entropies (such as (1/2, 1/2) and

(1/3, 1/3, 1/3)) are not isomorphic.

Two new central problems were formulated:

• Are Bernouill shifts with the same entropy isomorphic?

• Are K–systems with the same entropy isomorphic?



Isomorphism of Bernoulli shifts:

1959–63 Early special cases: Meshalkin and Blum–Hansen.

Example: Bernoulli shifts

(1/4, 1/4, 1/4, 1/4) and (1/2, 1/8, 1/8, 1/8, 1/8)

are isomorphic.

1962–64 Sinai: Any two Bernoulli shifts with equal entropy

are weakly isomorphic: each is isomorphic to

a factor of the other.

1967 Ornstein: Isomorphism of Bernoulli shifts with equal

entropy; end of the dominance of the Moscow school.

1968–72 Ornstein and collaborators: development of isomorphism

theory. Efficient necessary and sufficient conditions for

isomorphism to a Bernoulii shift (very weak Bernoulli).



Amazing consequences of Ornstein’s work: Bernoulli flows,

group automorphisms, tremendous variety of smooth systems as

well as systems coming from probability and number theory.

Bernoulli structure is very soft and seems to be everywhere.

Huge gap between Bernoulii and K–systems: Not only

there are many nonisomorphic K–systems with the same entropy

but K property can be achieved in unexpected ways, e.g. by

changing time in any ergodic positive entropy flow inducing (taking

the first return map of any ergodic positive entropy transformation

on a certain set (Ornstein, Rudolph, B. Weiss).



Topological entropy and thermodynamical

formalism

1964 Parry: Maximal entropy measures for topological

Markov chains (subshifts of finte type).

1965 Adler et al: Topological entropy.

1968–70 Variational principle for entropy

htop = supµ hµ

(Goodwin, Dinaburg, Goodman).

1967–70 Maximal entropy measures for hyperbolic systems

(Sinai, Margulis, Bowen).



Comparison of entropies:

Topological entropy represents the exponential growth rate of the

total number of orbit segments distinguishable with arbitrarily fine

but finite precision and describes in a crude but suggestive way the

total exponential complexity of the orbit structure with a single

number.

In the case of an ergodic measure, metric (Kolmogorov) entropy

can be characterized as the exponential growth rate for the number

of statistically significant distinguishable orbit segments. Note that

this is clearly never more than the topological entropy.



Maximal entropy measures:

Parry construction: uniform distribution of cylinders.

Sinai construction: reduction to topological Markov chains via

Markov partitions.

Bowen constuction: asymptotic distribution of periodic

points/orbits.

Margulis construction: product of asymptotic distributions of

volumes for stable & unstable manifolds.



1972–75 Thermodynamical formalism.

Variational principle for pressure for the potential ϕ:

Pϕ = sup
µ

(hµ +

∫

ϕdµ)

(Walters, Misiurewicz).

Theory of Gibbs measures & equilibrium states for Hoelder

potentials (Sinai, Ruelle). The Gibbs measure µϕ is unique and is

characterized by

Pϕ = (hµϕ
+

∫

ϕdµϕ).

Gibbs measures are constructed via weighted versions of Parry,

Sinai, Bowen and Margulis methods. SRB (Sinai, Ruelle, Bowen)

measures for Anosov systems & hyperbolic attractors are special

Gibbs measures with the logarithm of the Jacobian in the unstable

(stable) direction as the potential.



Entropy and non-uniform hyperbolicity

1975–77 Pesin theory:

Entropy, Lyapunov characteristic exponents

and stochastic behavior. Pesin entropy formula:

hµ =
∫

∑

χ+
i dµ

(µ absolutely continuous).

1980–82 A. Katok: Periodic points,

homoclinic points and horseshoes. In dimension 2:

htop ≤ lim supn→∞

log Pn(f)
n .

Pn(f) = #{periodic points for f of period n.}

Upper semicontinuity of htop.



Conclusions from Pesin theory: Hyperbolicity is the only

source of entropy in smooth systems. For an absolutely continuous

invariant measure entropy gives exact rate of infinitesimal

exponential expansion. π partitions are characterized through

families of stable and unstable manifolds. In particular, if

exponents do not vanish (hyperbolic measures) the system has at

most countably many ergodic components and they are Bernoulli

up to a finite permutation. In particular, weak mixing, mixing, K,

and Bernoulli properties are all equivalent.

On the topological side: Any (non-uniformly) hyperbolic

measure can be approximated in various senses by uniformly

hyperbolic sets; in particular, their topological entropies

approximate the entropy of the measure.



1985 Ledrappier–Young: Entropy and dimension,

hµ =
∑

diχ
+
i (0 ≤ di ≤ 1), (µ ergodic)

converse to the Pesin entropy formula:

di = 1 ⇔ µ SRB type measure.

1988–89 Yomdin, Newhouse: Entropy and volume growth.

Lower semicontinuity of entropy for C∞;

continuity of htop in dim 2.

Implies Shub Entropy Conjecture for C∞ maps:

htop(f) ≥ log s(f∗);

s(f∗) is the spectral radius of the induced map in

the total homology.



Entropy, asymptotics of periodic orbits and

rigidity

1970 Margulis: Multiplicative asymptotic.

Mixing Anosov flows (e.g. geodesic flows

on compact manifolds of (variable) negative curvature).

limt→∞ Pt · e
−t·htop · t · htop = 1;

Pt = #{periodic orbits of period ≤ t}.

1982 A. Katok: Conformal estimates for surfaces of genus ≥ 2:

htop ≥ ρ
(

−2πE
v

)1/2
, hλ ≤ ρ−1

(

−2πE
v

)1/2
;

E – Euler characteristic, v – area,

ρ ≥ 1 – conformal coefficient, λ–the Liouville measure.



Entropy rigidity for surfaces of genus ≥ 2:

htop = hλ ⇔ constant curvature.

Conjecture: For a negatively curved metric

htop = hλ ⇔ locally symmetric space.

1993 Besson–Courtois–Gallot:

Rigidity of topological entropy for locally symmetric spaces

of rank one: locally symmetric metrics strictly minimize

htop among metrics of fixed volume.

Later Flaminio: hλ may increase for fixed volume

perturbations of constant curvature metrics in dim 3.



1996–2000 Knieper: Multiplicative bounds for manifolds of

non-positive curvature of geometric rank one

c1t
−1ethtop ≤ Pt ≤ c2t

−1ethtop .

Uniqueness of maximal entropy measure.

1998 Dolgopyat: Exponential error term

for mixing Anosov flows with C1 foliations

(e.g. geodesic flows on surfaces of negative curvature).

2002 Gunesch: Margulis (multiplicative) asymptotic

for rank one manifolds of non-positive curvature

limt→∞ Pt · e
−t·htop · t · htop = 1.



Actions of Z
k

+
, Zk, Rk, k ≥ 2; rigidity of positive

entropy measures

Basic examples:

• ×2,×3 (Furstenberg, 1967):

E2 : S1 → S1 x 7→ 2x, ( mod 1)

E3 : S1 → S1 x 7→ 3x, ( mod 1).

• Commuting toral automorphisms: A, B ∈ SL(3, Z), AB = BA,

Ak = Bl ⇒ k = l = 0, A, B hyperbolic. The Z
2 action generated

by automorphisms of the torus T
3 = R

3/Z
3:

FA : x 7→ Ax, ( mod 1)

FB : x 7→ Bx, ( mod 1).

• Weyl chamber flow (WCF): M = SL(n, R)/Γ, n ≥ 3, Γ a lattice

in SL(n, R), D positive diagonals isomorphic to R
n−1. WCF:

The action of D on M by left translations.



Entropy function for an A action α; Z
k
+, Zk, Rk:

µ– an α-invariant measure; by the natural extension and

suspension can always reduce the situation to the case of R
k.

• Lyapunov exponents: χi ∈ (Rk)∗;

• Lyapunov hyperplanes: Kerχi;

• Weyl chambers. Connected components of R
k \

⋃

i Kerχi;

• Entropy function:

h(t) =: hµ(t) =: hµ(α(t).

Properties of the entropy function:

• h(λt) = |λ| · h(t);

• h(t + s) ≤ h(t) + h(s);

• h is linear in each Weyl chamber.

Follow from Ledrappier–Young entropy formula.



1989 Rudolph: µ × 2, ×3 invariant,

ergodic, hµ does not vanish ⇒ µ Lebesgue.

1992-95 A.Katok–Spatzier: Geometric approach, rigidity

results for algebraic actions including basic examples,

see also Kalinin–A.Katok, 2001.

1999 A. Katok: First measure rigidity results

for the non–algebraic non–uniform case

2002 A. Katok, S.Katok, K. Schmidt: Z
2 actions

by Bernoulli automorphisms; commuting toral

automorphisms with identical entropy functions,

weakly isomorphic but not isomorphic

(contrast with Sinai, Ornstein).



2003 E. Lindenstrauss: Arithmetic quantum

unique ergodicity via measure rigidity via measure rigidity

for actions of higher rank abelian groups.

Uses methods and results from earlier work of Ratner.

2003 Einsiedler, A. Katok, E. Lindenstrauss, A partial solution

of the Littlewood conjecture in Diophantine approximation

via measure rigidity.

Theorem: µ on SL(3, R)/SL(3, Z) is WCF invariant,

ergodic, hµ does not vanish ⇒ µ Haar.

Corollary: Let (u, v) ∈ R
2, 〈x〉 = dist(x, Z)

C(u, v) := liminf
n→∞

n〈nu〉〈nv〉 = 0

except for maybe a set of Hausdorff dim 0.

(Littlewood conjecture: C(u, v) = 0).


