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ACTIONS of Z
k

+
, Zk, Rk, k ≥ 2.

BASIC EXAMPLES

(1). ×2,×3 (Furstenberg,[F-1967]):

E2 : S1 → S1 x 7→ 2x, ( mod 1)

E3 : S1 → S1 x 7→ 3x, ( mod 1).

(2). Commuting toral automorphisms:

A, B ∈ SL(3, Z), AB = BA, Ak = Bl → k = l = 0, A, B

hyperbolic. The Z
2 action generated by automorphisms of the

torus T
3 = R

3/Z
3:

FA : x 7→ Ax, ( mod 1)

FB : x 7→ Bx, ( mod 1).

(3). Weyl chamber flow (WCF): M = SL(n, R)/Γ, n ≥ 3, Γ a

lattice in SL(n, R), D positive diagonals isomorphic to R
n−1.

WCF:

The action of D on M by left translations.



GENERAL ALGEBRAIC ANOSOV ACTIONS

• An action of a group G on a manifold is Anosov if some element

g ∈ G acts normally hyperbolically with respect to the orbit

foliation.

• It is partially hyperbolic if there is an invariant foliations F and

an element which acts normally hyperbolically with respect to F

Let H be a connected Lie group with Λ ⊂ H a cocompact lattice.

Define Aff (H) as the set of diffeomorphisms of H which map right

invariant vectorfields on H to right invariant vectorfields. Let

Aff (H/Λ) be the diffeomorphisms of H/Λ which lift to elements of

Aff (H).

• An action ρ of a discrete group G on H/Λ is affine algebraic if

ρ(g) is given by a homomorphism G → Aff (H/Λ).



The linear part: Let h be the Lie algebra of H. Identifying h

with the right invariant vectorfields on H, any affine algebraic

action determines a homomorphism σ : G → Aut h. Call σ the

linear part of this action. We will also allow quotient actions of

these on finite quotients of H/Λ, e.g. on infranilmanifolds.

According to the properties of the linear part the algebraic actions

can be classified into:

• Elliptic (semisimple eigenvalues of modulus one),

• Parabolic (eigenvalues of modulus one with some Jordan blocks),

• Hyperbolic (Anosov); if G is discrete H has to be nilpotent,

• Partially hyperbolic (otherwise).



Automorphisms of the tori and solenoids; generalization of

basic examples NN 1,2: If H is abelian then the quotient H/Λ

ia a torus and Z
k acts by automorphisms.

An automorphism of a torus acts ergodically with respect to Haar

measure iff there are no roots of unity among its eigenvalues. Any

such automorphism is Anosov or partially hyperbolic.

The genuine higher rank assumption for an action of Z
k on a torus:

Z
k contains a Z

2 such that every non-trivial element of Z
2 acts

ergodically with respect to Haar measure.

The natural extension of an action by toral endomorphisms (as in

the basic example 1) is an acion of automorphisms by a solenoid.



Homogeneous actions:

Let R
k ⊂ H where H is a connected Lie group. Let R

k act on a

quotient H/Λ by left translations where Λ is a lattice in H.

Suppose C is a compact subgroup of H which commutes with R
k.

Then the R
k-action on H/Λ descends to an action on C \ H/Λ.

The general algebraic R
k-action ρ is a finite factor of such an

action. Let c be the Lie algebra of C. The linear part of ρ is the

representation of R
k on c \ h induced by the adjoint representation

of R
k on the Lie algebra h of H.



Suspension

The suspension construction allows to associate with an algebraic

Z
k action α an algebraic R

k action called the suspension action

whose dynamical properties are very closely related to those of the

action α.

• The suspension of an Anosov action is Anosov.

• The suspension of an action by automorphisms of a torus is a

homogeneous action on a certain solvable Lie group.



Symmetric space examples (generalization of the basic

example N3):

• G a semisimple connected real Lie group of the noncompact type

and of R-rank at least 2;

• A the connected component of a split Cartan subgroup of G.

• Γ is an irreducible torsion-free cocompact lattice in G.

The centralizer Z(A) of A splits as a product Z(A) = M A with M

compact. Since A commutes with M , the action of A by left

translations on G/Γ descends to an A-action on N =: M \ G/Γ.

This is a general Weyl chamber flow.

Any Weyl Chamber flow is Anosov.

If G is R-split (e.g. G = SL(n, R)) then M = {1}.



LYAPUNOV EXPONENTS

Let µ be an α-invariant measure; by the natural extension and

suspension we can always reduce the situation to the case of R
k.

• Lyapunov exponents: χi ∈ (Rk)∗;

• Lyapunov hyperplanes: Kerχi;

• Weyl chambers. Connected components of R
k \

⋃
i Kerχi;



LYAPUNOV FOLIATIONS

• For a Lyapunov exponent χ a (positive) Lyapunov half–space is

χ−1(0,∞). Lyapunov exponents have the same Lyapunov

half–spaces iff they are positively proportional.

• For an algebraic action each Lyapunov exponent defines a smooth

(right G–invariant) Lyapunov distribution.

• The sum of the distributions corresponding to all positively

proportional exponents is called a coarse Lyapunov distribution

(identified with a Lyapunov half–space).

• A coarse Lyapunov distribution is integrable to a smooth

(right–invariant) Lyapunov foliation. It is a minimal nontrivial

intersection of unstable foliations for certain elements of the action.

These foliations are basic objects in the study of measure rigidity.



ENTROPY FUNCTION FOR AN ACTION α

OF Z
k
+, Zk OR R

k.

• Entropy function:

h(t) =: hµ(t) =: hµ(α(t)).

• Ledrappier–Young entropy formula F. Ledrappier and L.-S.

Young, Ann. of Math. 122 (1985), 540–574.

hµ =
∑

diχ
+

i (0 ≤ di ≤ 1)

µ an ergodic invariant measure of a C2 diffeomorphism f .

χi the Lyapunov characteristic exponents of f with respect to µ;

di geometric characteristics of invariant foliations and conditional

measures.



PROPERTIES OF THE ENTROPY FUNCTION

From Ledrappier–Young entropy formula:

• h(λt) = |λ| · h(t);

• h(t + s) ≤ h(t) + h(s);

• h is linear in each Weyl chamber.



MEASURE RIGIDITY FOR

THE WEYL CHAMBER FLOW ON SL(n, R)/SL(n, Z)

Conjecture 0.1 (Margulis) Let µ be an D-invariant and ergodic

probability measure on X = SL(n, R)/SL(n, Z) for k ≥ 3. Then µ

is algebraic, i.e. there is a closed, connected group L ⊃ D so that µ

is the L invariant measure on a single, closed L orbit.

This conjecture is a special case of much more general conjectures

in this direction by Margulis and by A. Katok and R. Spatzier

[KS96].



In [EKL03] we prove a weaker version of Margulis conjecture:

Theorem 0.2 (M.Einsiedler, A.K., E.Lindenstrauss) Let

X = SL(n, R)/SL(n, Z). Let µ be an D-invariant and ergodic

measure on X. Assume that there is some one parameter subgroup

of D which acts on X with positive entropy. Then µ is algebraic.



HISTORY

The first results for measure rigidity for higher rank hyperbolic

actions deal with the Furstenberg ×m, ×n problem (the first basic

example): After a weaker result of R. Lyons, Rudolph [Ru90] and

A. Johnson proved that

any probability measure invariant and ergodic under the action of

the semigroup generated by ×m, ×n (m, n not powers of the same

integer), such that some element of this semigroup acts with

positive entropy, is Lebesgue.

When Rudolph’s result appeared, I suggested another test model

for the measure rigidity: two commuting hyperbolic automorphisms

of the three–dimensional torus (the second basic example above)

and started to look for a more geometric approach since Rudolph’s

proof seemed, at least superficially, too closely related to symbolic

dynamics.



As a result by 1992 we (Spatzier and A.K.) developed a technique

based on the consideration of conditional measures on various

invariant foliations, namely stable and unstable foliations of various

elements of the actions and their intersections, such as Lyapunov

foliations [KaK99].

The method was presented in [KS96] and it is still the foundation

of essentially all work for measure rigidity for hyperbolic and

partially hyperbolic actions of higher rank abelian groups.

In retrospect, Rudolph’s proof can also be interpreted in these

terms.



INVARIANCE OF CONDITIONAL MEASURES

The method is based on the observation that if

a nontrivial element a of the action acts on a certain Lyapunov

foliation as an isometry then almost every conditional measure is

invariant under a certain isomety.

Hence, if a typical point asymptotically returns near another point

on the same leaf the conditional measure must be invariant under a

translation.



THE ENTROPY RESTRICTION

For a zero entropy measure the conditional measures on stable and

unstable foliations (and hence on Lyapunov foliations) are

δ–measures. So there are no such returns and hence:

The method of [KS96] and its later elaborations are fundamentally

restricted to invariant measures which have positive entropy with

respect to at least some elements of the action.



ERGODICITY (RECURRENCE) RESTRICTION

There is another restriction which looks technical on the surface,

but which precludes immediate applications of the results from

[KS96] to some of the most interesting cases.

In order to guarantee enough nontrivial returns, ergodic

components of the singular element a have to contain leaves of the

corresponding Lyapunov foliation.

This does not follow from the ergodicity of a measure with respect

to the whole action. Thus principal results of [KS96] corrected and

and further elaborated in [KaK99] and [KaS02] are coached in such

terms as to provide for nontrivial returns.



OVERCOMING THE ERGODICITY RESTRICTION. I:

TNS

There are certain cases where the linear algebra of Lyapunov

exponents guarantee ergodicity of one–parameter subgroups.

This happens for the second basic example, and more generally, for

Cartan actions on the torus. Even more generally such the TNS

condition is sufficient: (totally nonsymplectic; no two Lyapunov

exponents are negatively proportional).



OVERCOMING THE ERGODICITY RESTRICTION.II:

NON-COMMUTATIVITY OG FOLIATIONS

However, those assumptions are not satisfied for Weyl chamber

flows because of the symmetry of the root system or, more

geometrically, transverse symplectic structure. In this case all

Lyapunov exponents appear in ± pairs.

At the end of [KS96] there is a brief indication of how the

ergodicity problem could be partially overcome for Weyl chamber

flows using non-communitativity of the above mentioned foliations.



A far reaching development of this idea together with the

observation that the conditional measures of the unstable foliation

has the structure of a product measure led to the paper [EK02]. In

particular it is shown there that

if µ is an A-invariant measure on X = SL(k, R)/Γ, and if the

entropies of µ with respect to all one parameter groups are positive,

then µ is the Haar measure.

This is true not only for Γ = SL(k, Z) but for every discrete

subgroup Γ. There are similar results for Weyl chamber flows on

other split simple Lie groups.

An extension to the nonsplit and p-adic cases is in [EK04].



As indicated in [EK02] this result already has implications for the

Littlewood conjecture; specifically it implies that

the Hausdorff dimension of the set NL of exceptional points is no

greater than one.



THE HIGH ENTROPY CASE

The principal new observation for the split case where all Lyapunov

foliations are one–dimensional:

If conditional measure in two root directions (Lyapunov foliations)

are nontrivial then the conditional measure in the direction of their

commutator is Haar.

This allows to treat the high entropy case.

In particular for the Weyl chamber flow on SL(3, R/Γ) the only

possible non-algebraic measures with positive directional entropy

are those which have nontrivial conditionals only for a single pair of

the Lyapunov directions (the low entropy case)



THE LOW ENTROPY CASE

To deal with this case and hence to come down from one to zero in

Hausdorff dimension statement another, quite different approach to

measure rigidity was needed. This was developed by

E. Lindenstrauss in Invariant measures and arithmetic quantum

unique ergodicity, preprint (2003). A special case of the main

theorem of that paper is a version of Theorem 0.2 for the Cartan

(positive diagonal) action on SL(2, R) × SL(2, R)/Γ, where Γ is an

irreducible lattice in SL(2, R) × SL(2, R). The dynamical

statement was used by Lindenstrauss to establish quantum unique

ergodicity in some arithmetic cases.



TRANSLATION INVARIANCE

IN THE LOW ENTROPY CASE

We use an adaptation of the Lindenstrauss method for SL(n, R). It

is based on studying the behavior of µ along certain unipotent

trajectories, using techniques introduced by Ratner to study

invariant measures unipotent flows, in particular the H-property.

We apply this ideas to a conditional measure µ on a Lyapunov

foliation which is a priori not even quasi invariant under the

corresponding (or any other) unipotent flow.



COMPLEMENTARITY OH THE

HIGH AND LOW ENTROPY CASES

In showing that the high entropy and low entropy cases are

complementary we use a variant on the Ledrappier-Young entropy

formula.

hµ =
∑

diχ
+

i (0 ≤ di ≤ 1)

Notice that such use (which I suggested) is one of the simplifying

ideas in G. Tomanov and Margulis’ alternative proof of Ratner’s

theorem.


