Lectures on Surfaces: (almost) everything you wanted to know about them

Anatole Katok

Vaughn Climenhaga

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802

 $E\text{-}mail\ address: \texttt{katok_a@math.psu.edu}$

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNI-VERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802

 $E\text{-}mail\ address:\ \texttt{climenha@math.psu.edu}$

2000 Mathematics Subject Classification. Primary 51-01, 53-01, 57N05; Secondary 53A05, 57R05

Key words and phrases. surfaces, geometry, topology, Euler characteristic, MASS

Topographic data for illustration of earth in Figure 1.12 is taken from the National Oceanic and Atmospheric Administration's ETOPO2v2 data set, available at www.ngdc.noaa.gov.

Contents

Preface	xi
Chapter 1. Various Ways of Representing Surfaces and Basic Examples	1
Lecture 1	1
a First examples	1
b. Equations vs. other methods	4
c. Planar models	8
d. Projective plane and flat torus as factor spaces	9
Lecture 2.	11
a. Equations for surfaces and local coordinates	11
b. Other ways of introducing local coordinates	14
c. Parametric representations	16
d. Metrics on surfaces	17
Lecture 3.	18
a. More about the Möbius strip and projective plane	18
b. A first glance at geodesics	20
c. Parametric representations of curves	22
d. Difficulties with representation by embedding	24
e. Regularity conditions for parametrically defined	
surfaces	27
Lecture 4.	28
	37
	v

vi	Contents
a. Remarks on metric spaces and topology	28
b. Homeomorphisms and isometries	31
c. Other notions of dimension	32
d. Geodesics	33
Lecture 5.	34
a. Isometries of the Euclidean plane	34
b. Isometries of the sphere and the elliptic p	lane 38
Lecture 6.	39
a. Classification of isometries of the sphere	and the
elliptic plane	39
b. Area of a spherical triangle	41
Lecture 7.	43
a. Spaces with lots of isometries	43
b. Symmetric spaces	45
c. Remarks concerning direct products	47
Chapter 2. Combinatorial Structure and Topo	logical
Classification of Surfaces	51
Lecture 8.	51
a. Topology and combinatorial structure on	surfaces 51
b. Triangulation	54
c. Euler characteristic	58
Lecture 9.	60
a. Continuation of the proof of Theorem 2.4	60
b. Calculation of Euler characteristic	67
Lecture 10.	69
a. From triangulations to maps	69
b. Examples	72
Lecture 11.	75
a. Euler characteristic of planar models	75
b. Attaching handles	76
c. Orientability	79
d. Inverted handles and Möbius caps	8
Lecture 12.	82
a. Non-orientable surfaces and Möbius caps	82
b. Calculation of Euler characteristic	83

Cont	cents	vii
c.	Covering non-orientable surfaces	85
d.	Classification of orientable surfaces	87
Le	cture 13.	88
a.	Proof of the classification theorem	88
b.	Non-orientable surfaces: Classification and models	93
Le	cture 14.	94
a.	Chain complexes and Betti numbers	94
b.	Homology of surfaces	96
c.	A second interpretation of Euler characteristic	98
Le	cture 15.	100
a.	Interpretation of the Betti numbers	100
b.	Torsion in the first homology and non-orientability	102
с.	Another derivation of interpretation of Betti numbers	103
Chap	ter 3 Differentiable Structure on Surfaces: Real and	
onap	Complex	105
Le	cture 16.	105
a.	Charts and atlases	105
b.	First examples of atlases	108
Le	cture 17.	111
a.	Differentiable manifolds	111
b.	Diffeomorphisms	112
с.	More examples of charts and atlases	115
Le	cture 18.	119
a.	Embedded surfaces	119
b.	Gluing surfaces	119
с.	Quotient spaces	120
d.	Removing singularities	122
Le	cture 19.	123
a.	Riemann surfaces: definition and first examples	123
b.	Holomorphic equivalence of Riemann surfaces	127
c.	Conformal property of holomorphic functions and	100
,	invariance of angles on Riemann surfaces	129
d.	Complex tori and the modular surface	131
Le	cture 20.	132
a.	Differentiable functions on real surfaces	132

viii		Contents
b.	Morse functions	137
с.	The third incarnation of Euler characteristic	140
Le	cture 21.	143
a.	Functions with degenerate critical points	143
b.	Degree of a circle map	147
c.	Brouwer fixed point theorem	151
Le	cture 22.	152
a.	Zeroes of a vector field and their indices	152
b.	Calculation of index	155
с.	Tangent vectors, tangent spaces, and the tangent	
	bundle	157
Chap	ter 4. Riemannian Metrics and Geometry of Surface	es 161
Le	cture 23.	161
a.	Definition of a Riemannian metric	161
b.	Partitions of unity	166
Le	cture 24.	168
a.	Existence of partitions of unity	168
b.	Global properties from local and infinitesimal	171
с.	Lengths, angles, and areas	173
Le	cture 25.	175
a.	Geometry via a Riemannian metric	175
b.	Differential equations	176
с.	Geodesics	177
Le	cture 26.	180
a.	First glance at curvature	180
b.	The hyperbolic plane: two conformal models	183
с.	Geodesics and distances on H^2	189
Le	cture 27.	192
a.	Detailed discussion of geodesics and isometries in the	ne
	upper half-plane model	192
b.	The cross-ratio	195
с.	Circles in the hyperbolic plane	199
Le	cture 28.	201
a.	Three approaches to hyperbolic geometry	201
b.	Characterisation of isometries	202

Contents	ix
Lecture 29.	206
a. Classification of isometries	206
b. Geometric interpretation of isometries	215
Lecture 30.	220
a. Area of triangles in different geometries	220
b. Area and angular defect in hyperbolic geometry	221
Lecture 31.	227
a. Hyperbolic metrics on surfaces of higher genus	227
b. Curvature, area, and Euler characteristic	231
Lecture 32.	234
a. Geodesic polar coordinates	234
b. Curvature as an error term in the circle length formula	236
c. The Gauss-Bonnet Theorem	238
d. Comparison with traditional approach	243
Chapter 5. Topology and Smooth Structure Revisited	247
Lecture 33.	247
a. Back to degree and index	247
b. The Fundamental Theorem of Algebra	250
Lecture 34.	253
a. Jordan Curve Theorem	253
b. Another interpretation of genus	257
Lecture 35.	259
a. A remark on tubular neighbourhoods	259
b. Proving the Jordan Curve Theorem	260
c. Poincaré-Hopf Index Formula	263
Lecture 36.	264
a. Proving the Poincaré-Hopf Index Formula	264
b. Gradients and index formula for general functions	269
c. Fixed points and index formula for maps	271
d. The ubiquitous Euler characteristic	273
uggested Reading	275
Hints	279
ndex	287

Preface

This book is a result of the MASS course in geometry in the Fall semester 2007. MASS core courses are traditionally labeled as analysis, algebra, and geometry, but the understanding of each area is broad, e.g. number theory and combinatorics are allowed as algebra courses, topology is considered as a part of geometry, and dynamical systems as part of analysis. No less importantly, an interaction of ideas and concepts from different areas of mathematics is highly valued.

The topic came to me as very natural under these conditions. Surfaces are among the most common and easily visualized mathematical objects, and their study brings into focus fundamental ideas, concepts, and methods from geometry proper, topology, complex analysis, Morse theory, group theory, and suchlike. At the same time, many of those notions appear in a technically simplified and more graphic form than in their general "natural" settings. So, here was an opportunity to acquaint a group of bright and motivated undergraduates with a wealth of concepts and ideas, many of which would be difficult for them to absorb if presented in a traditional fashion. This is the central idea of the course and the book reflects it closely.

The first, primarily expository, chapter introduces many (but not all) principal actors, such as the round sphere, flat torus, Möbius strip, Klein bottle, elliptic plane, and so on, as well as various methods of describing surfaces, beginning with the traditional representation by

equations in three-dimensional space, proceeding to parametric representation, and introducing the less intuitive, but central for our purposes, representation as factor-spaces. It also includes a preliminary discussion of the metric geometry of surfaces. Subsequent chapters introduce fundamental mathematical structures: topology, combinatorial (piecewise-linear) structure, smooth structure, Riemannian metric, and complex structure in the specific context of surfaces. The assumed background is the standard calculus sequence, some linear algebra, and rudiments of ODE and real analysis. All notions are introduced and discussed, and virtually all results proved, based on this background.

The focal point of the book is the Euler characteristic, which appears in many different guises and ties together concepts from combinatorics, algebraic topology, Morse theory, ODE, and Riemannian geometry. The repeated appearance of the Euler characteristic provides both a unifying theme and a powerful illustration of the notion of an invariant in all those theories.

A further idea of both the motivations and the material presented in the book may be found in the Table of Contents, which is quite detailed.

My plan for teaching the course was somewhat bold and ambitious, and could have easily miscarried had I not been blessed with a teaching assistant who became the book's co-author. I decided to use no text either for my own preparations or as a prop for students. Instead, I decided to present the material the way I understand it, with not only descriptions and examples, but also proofs, coming directly from my head. A mitigating factor was that, although sufficiently broadly educated, I am not a professional topologist or geometer. Hence, the stuff I had ready in my head or could easily reconstruct should not have been too obscure or overly challenging.

So, this is how the book came about. I prepared each lecture (usually without or with minimal written notes), and my TA, the third year Ph.D. student Vaughn Climenhaga, took notes and within 24 hours, usually less, prepared a very faithful and occasionally even somewhat embellished version typed in TeX. I usually did some very

xii

Preface

light editing before posting each installation for the students. Thus, the students had the text growing in front of their eyes in real time.

By the end of the Fall semester the notes were complete: additional work involved further editing and, in a few cases, completing and expanding proofs; a slight reordering of material to make each chapter consist of complete lectures; and in a couple of cases, merging two lectures into one, if in class a considerable repetition appeared. But otherwise the book fully retained the structure of the original onesemester course, and its expansion is due to the addition of a large number of pictures, a number of exercises (some were originally given in separate homework sets, others added later), and some "prose", i.e. discussions and informal explanations. All results presented in the book appeared in the course, and, as I said before, only in a few cases did proofs need to be polished or completed.

Aside from creating the original notes, my co-author Vaughn Climenhaga participated on equal terms in the editorial process, and, very importantly, he produced practically all of the pictures, including dozens of beautiful 3-dimensional images for which, in many cases, even the concept was solely his. Without him, I am absolutely sure that I would not have been able to turn my course into a book in anything approaching the present timeframe, and even if I did at all, the quality of the final product would have been considerably lower.

Anatole Katok

xiii